
HPC-FF – Overview and Experience
eGOTiT Seminar, 15th Dec

Nitya Hariharan
High Level Support Team

Max-Planck-Institut für Plasmaphysik, München, Germany

With contributions from:
IPP, Germany; University of Alicante, Spain

Outline

• HPC-FF

• Intel Nehalem Architecture

• Infiniband network

• BEUPACK Benchmark

• Shared Memory Segments

• CPU affinity

• Start of production – Aug 2009

• 1080 nodes @ 8 cores,
peak performance 101 TFlop/s

• Quad core Intel Xeon 5570 (Nehalem)
processors

• 24 Gb per node, Lustre filesystem

• Infiniband network with Mellanox switch

• ParTec MPI, Intel MPI

HPC-FF

Intel Nehalem

• Supports SSE4.2 instructions

• QPI – Quick Path Interconnect

• Theoretical raw bandwidth – 25.6 GB/s

• Dynamic resource scaling

• NUMA architecture - low latency for local memory

Source - Intel

Presenter
Presentation Notes
Raw bandwidth – data transfer without taking into account packet transfer overhead or other effects.

Sustainable bandwidth – the one which can be done actually.

Dynamic resource scaling – when some cores are idle, the others make complete use of their resources.

Before QPI

Proc0 Proc1

Memory Memory

I/O
Controller

Memory
Controller

Total Bandwidth

upto 21 GB/s

Source - Intel

QPI

Memory

Source - Intel

QPI
25.6 GB/s Memory

Proc0 Proc1

I/O
Controller

Total Bandwidth upto 64 GB/s

Memory
Controller

Memory
Controller

Upto 32 GB/s

2 uni-
directional

links

Upto 32 GB/s

3 DDR3
channels

Local Memory access

QPI
Memory Memory

Proc0 Proc1

Source - Intel

QPI
Memory Memory

Proc0 Proc1

Source - Intel

Remote Memory access

Presenter
Presentation Notes
Cpu0 requests for cache line X, not present in any CPU0 cache

 1) CPU0 requests data from CPU1 over QPI

 2) CPU1’s Integrated Memory Controller requests DRAM

 3) CPU1 snoops internal caches

Data returned to CPU0 over QPI.

Infiniband(IB) Network

• Fabric/network topology for interconnecting compute and I/O
nodes

• Nodes connected to the network through Host Channel Adaptors
(HCAs)

• Queue based model, Send and Receive Queue (Queue Pair – QP)

• RDMA (Remote Direct Memory Access) also supported

Presenter
Presentation Notes
HCA – they sit on processing nodes and generate and consume IBA (infiniband architecture) packets. Their interface to the customers is in the form of Infiniband verbs.

Two queues, a send and a receive queue. Send queue holds instructions to transmit data and receive queue contains

Instructions as to where the data received has to be placed.

Additional reliable layer for lost/corrupted/out of order messages.

Can be switched on by setting PSP_OFED=1.

RDMA

• Direct access to memory location of remote processes

• Uses zero-copy mechanism – origin and destination buffers are
registered prior to use

• Virtual address and memory access key of remote process reqd

• Lower end-to-end latencies

• RDMA Read and Write

Presenter
Presentation Notes
Kernel is not involved in zero-copy

Infiniband

• Different types of transport service
 Reliable connection
 Unreliable connection
 Reliable datagram
 Unreliable datagram

• On HPC-FF, RDMA writes with reliable connections as of now

• Beta implementation of Unreliable datagram

Presenter
Presentation Notes
Reliable connection – connection established between endnodes, messages are sent reliably.

Unreliable connection – connection established and messages sent. Transmission not guaranteed

Unreliable datagram – no connection established. Single packet message can be sent to an endnode, transmission not guaranteed

Reliable datagram – single packet message can be sent reliably to any endnode without a one-to-one connection. Optional

IB and MPI

Transport Services Verbs API

Send/Recv queues, RDMA

Infiniband

RC, UC, RD, UD

MPI Implementation

Send/Recv or RDMA, Registering buffers, Flow control

BEUPACK Benchmark

Fusion codes used as benchmark for IFERC procurement

• ORB5

• GENE

• GEMR

• JOREK

• MDCASK

• GYSELA

ORB5 benchmark

• Strong scaling – 2048x106 ions

• Weak scaling – 256x106 ions (256 cores) and then quadrupled

• Memory issues on 4096 cores, used PSP_ONDEMAND

Test cases by A. Bottino

Presenter
Presentation Notes
Particle in cell, gyrokinetic code.

PSP_ONDEMAND

• ParTec MPI requires 0.55 MB per connection

• 16 buffers for Send and Receive

• ~2.2 GB per core for 4096 cores -> 500 MB left for application

• PSP_ONDEMAND=1, dynamic memory allocation

PSP_ONDEMAND

• Works well as long as no all-to-all communication or large core
numbers

• PSP_OPENIB_SENDQ_SIZE and PSP_OPENIB_RECVQ_SIZE

• Can degrade MPI’s throughput and messaging rate,
should be >= 3 to prevent deadlocks.

Presenter
Presentation Notes
0.141 MB on 3 buffers, 0.172 MB on 4 and 0.305 MB on 8 buffers

• Strong scaling – 1.752 GB for 512 cores

• Weak scaling – 1.752 GB (constant)

• Usage of MPI_ANY_SOURCE

Test cases by T. Dannert

GENE benchmark

Presenter
Presentation Notes
GENE is a plasma microturbulence code which can be used to efficiently compute gyroradius-scale fluctuations and the resulting transport coefficients in magnetized fusion/astrophysical plasmas. To this aim, it solves the nonlinear gyrokinetic equations on a fixed grid in five-dimensional phase space (plus time).

• Communication lib has to poll a long list of receive queues

• Avoid it!

• When PSP_ONDEMAND=1, only one File Descriptor (FD)

has all unestablished connections

• Few IB buffers from established connections and one FD

MPI_ANY_SOURCE

GEMR benchmark

• Strong scaling – ITER cases, grid size 1024x2048, 2048x4096

• Weak scaling – AUG, JET and ITER cases

 AUG – 256x512

 JET – 512x1024

 ITER – 1024x2048

• No system related issues

Test cases by B.D. Scott

Presenter
Presentation Notes
Gyrofluid electromagnetic code

JOREK benchmark

• Only hybrid code as part of the benchmark

• Uses PastiX library – parallel solver for large sparse systems

• MPI_THREAD_MULTIPLE (MTM)

• MPI_THREAD_FUNNELED

– errors with MPI_Start/MPI_Startall

• Test runs on IBM AIX, Sun Linux cluster AIMS (Intel MPI)

• Intel MPI installed on HPC-FF - /usr/local/impi/3.2.2.006/bin64/

• Working version of ParTec MPI with MTM support available

Presenter
Presentation Notes
Non linear MHD code to study the edge localised modes in tokomaks.

MDCASK benchmark

• Strong scaling – upto 1 billion atoms, too large for 512 cores

(memory issues)

• Weak scaling – upto 2 billion atoms

• PSP_ONDEMAND – Intel MPI

• Intel does dynamic buffer allocation by default
I_MPI_USE_DYNAMIC_CONNECTIONS

Test cases by M.J. Caturla

Presenter
Presentation Notes
Molecular dynamics code to simulate radiation damage in metals.

ParTec and Intel MPI

Number of cores ParTec MPI Intel MPI

128 68 MB 68 MB

256 138 MB 139 MB

512 278 MB 281 MB

1024 558 MB 565 MB

2048 1118 MB Program crash

Memory consumption with static buffer allocation

PSI_TPP

• NUMA design

• Memory separated into two nodes of 12 GB each

Processor 0 Processor 1

Processor 0 Processor 1

PSI_TPP = 2

Default
(PSI_TPP = 1)

Presenter
Presentation Notes
With 4 active cores in a node, Processor 0 is assigned all the four tasks and Processor 1 is idling. Only when we use ppn=8 and PSI_TPP=2 with 4 active cores, the tasks are evenly distributed across both the processors.

ppn PSI_TPP Number of cores per
compute node

Memory per
core

Explanation

8 1 (default) 8 3 1 core allocated
per task.

8 2 4 6 2 cores allocated
per task, 2*3GB

memory available
per core. Doubled

bandwidth.
8 4 2 12 4 cores allocated

per task.

4 1 (default) 4 3 1 core allocated
per task.

PSI_TPP

PSI_TPP

Benchmark
(512 cores)

Run time in
seconds

(PSI_TPP=1)

Run time in
seconds

(PSI_TPP=2)

%Gain

ORB5 309.34 280.12 9.45
MDCASK – 250

Million atoms
4.80 (per time step) 4.64 (per time step) 3.33

MDCASK – 500
Million atoms

9.26 (per time step) 8.82 (per time step) 4.75

GEMR – ITER
case (problem

size 4096x2048)

2730.28 1985.62 27.27

GEMR – ITER
case (problem

size 2048x1024)

682.37 428.7 37.17

GENE 74.87 49.99 33.23

Shared Memory Segments (SMS)

• SMS – area of memory accessible by more than one process on
the same node

• Based on System V IPC (Inter Process Communication)
framework

• FIPC (Fortran IPC) module by Ian Bush

• Fortran and C interoperability

• Hybrid codes – MPI and OpenMP, effort in adding OpenMP to
existing MPI codes

• Useful for machines like HPC-FF

• More portable, no thread-safe MPI reqd

FIPC

• Create a context – fipc_init

• Create a SMS in this context – fipc_seg_create

• Processes with an SMP node share the memory segment

• Need semaphores – fipc_critical_start/end

• Routines like fipc_allreduce, fipc_ctxt_rank, fipc_ctxt_size

MPI_COMM_WORLD Base comm

Node 0 Node 1 Node comm

1 2 0 3

4 6 5 7

9 10 8 11

12 14 13 15
Root comm

FIPC Context

Splines and SMS
• Tested with Cubic Splines from Numerical Recipes

• Two functions spline and splint

• Input data x, f(x) and output of spline can be used as SMS.

• Will be used for EZspline library for ASCOT.

• Downside, SMS not deleted after abnormal termination. Need
additional processing. On batch nodes, cleaned up by ParTec
software, but can still be a problem with multiple jobs.

CPU Affinity

• Intel’s OpenMP runtime library allows OpenMP threads to
be bound to physical processing units

• Can have a dramatic impact on the runtime of the code

• Need to use KMP_AFFINITY

 Can determine machine topology and assign OpenMP
threads to processors

• On HPC-FF, KMP_AFFINITY overwritten by PSI daemon

• Need to export two other variables

 __PSI_NO_PINPROC -> 1

 __PSI_NO_MEMBIND -> 1

KMP_AFFINITY=compact

Proc0 Proc1

Node

0 1 2 3 30 1 2

0 1 2 3 4 5 6 7

OpenMP thread numbers

KMP_AFFINITY=scatter

Proc0 Proc1

Node

0 1 2 3 30 1 2

0 2 4 6 1 3 5 7

OpenMP thread numbers

Additional information

• Use module commands in the batch script

• To check correct paths of the executable, use ldd in the batch
script

• Not all .a files found in the compute nodes, compile in the login
node while debugging.

• Statically linked files have a ‘.a’ extension, so an executable
compiled in the login node can still run on the compute node.

• Compiling on the compute node will not work as all the .a files are
required during the compilation process.

Presenter
Presentation Notes
Intel MPI - change PATH accordingly. But use Parastation mpiexec.

Jf29l01-03, compute nodes have a ‘c’ instead of the ‘l’.

Summary

• Two versions of ParTec MPI, Intel MPI

• MPI consumes memory, use PSP_ONDEMAND
where ever possible

• Avoid MPI_ANY_SOURCE

• Use PSI_TPP to increase available memory and
bandwidth

Acknowledgements

• Juelich Support - Alexander Schnurpfeil, ParTec - Jens Hauke

• ORB5 – Alberto Bottino, IPP

• GENE – Tilman Dannert, IPP

• GEMR – Bruce D Scott, IPP

• JOREK – Guido Huysmans, CEA; Florent Sourbier (Benchmark), CEA

• MDCASK – Maria Jose Caturla, Univ of Alicante

• GYSELA - Virginie Grandgirard (Benchmark on HPC-FF), CEA

• FIPC module - Ian Bush, NAG

	Slide Number 1
	Outline
	Slide Number 3
	Intel Nehalem
	Before QPI
	QPI
	Local Memory access
	Remote Memory access
	Infiniband(IB) Network
	RDMA
	Infiniband
	IB and MPI
	BEUPACK Benchmark
	ORB5 benchmark
	 PSP_ONDEMAND
	PSP_ONDEMAND
	Slide Number 17
	Slide Number 18
	GENE benchmark
	MPI_ANY_SOURCE
	Slide Number 21
	Slide Number 22
	GEMR benchmark
	Slide Number 24
	Slide Number 25
	JOREK benchmark
	MDCASK benchmark
	Slide Number 28
	Slide Number 29
	ParTec and Intel MPI
	PSI_TPP
	PSI_TPP
	PSI_TPP
	 Shared Memory Segments (SMS)
	FIPC
	FIPC Context
	Splines and SMS
	CPU Affinity
	KMP_AFFINITY=compact
	KMP_AFFINITY=scatter
	Additional information
	Summary
	Slide Number 43

