
Max-Planck-Institut für Plasmaphysik, EURATOM Association

4
th Summer School on Numerical Modelling for Fusion, 10

th Oct. 2012, Garching

Global electromagnetic gyrokinetic particle-in-cell simulation

R. Hatzky

High Level Support Team

Roman Hatzky · HLST – core team



Max-Planck-Institut für Plasmaphysik, EURATOM Association

4
th Summer School on Numerical Modelling for Fusion, 10

th Oct. 2012, Garching

Outline

• The High Level Support Team

• The Vlasov-Maxwell equations

• The Particle-In-Cell (PIC) method and its gyrokinetic discretization

• The cancellation problem

• Control variates as variance reduction method

• The adjustable control variate (ACV)

• Numerical results

• Summary

Roman Hatzky · HLST – core team



1080 nodes @ 8 cores,
peak performance
101 TFlop/s
Start of production:
August 2009

HPC-FF High Level Support Team

core team (5 persons)

+ 4 ppy in other Associations

The EFDA HPC project

High Performance Computer for Fusion Applications



The High Level Support Team

HLST core team at IPP Garching

Quite difficult to find candidates with extensive
High Performance Computing (HPC) & physics background

Roman Hatzky core team leader

Tamás Fehér (plasma physicist with HPC experience)
Matthieu Haefele (computer engineer visualization specialist)
Kab Seok Kang (numerical mathematician)
Michele Martone (computer engineer)
Tiago Ribeiro (plasma physicist with HPC experience) 

50 applications were evaluated to select the members of the core team



The High Level Support Team

Salomon Janhunen (TEKES, Finland)
Huw Leggate (DCU, Ireland)
Sebastian Petruczynik (PSNC, Poland) 
Trach-Minh Tran (CRPP, Switzerland)

The staff members are located at fusion relevant sites all over Europe
They dedicate 50% of their working time to HLST

HLST staff members



The High Level Support Team

Management of HLST

The work is coordinated by the HLST coordinator, Darren McDonald.
The core team leader, Roman Hatzky, guides the daily work.
The whole HLST meets personally twice a year in Garching.

The HLST has its own web site URL: www.efda-hlst.eu for 
dissemination purpose.



The High Level Support Team

Main tasks for HLST

The HLST team is a support unit to ensure optimal exploitation of HPC-FF, 
i.e. it is not focused on its own academic research.

Support for code development
Single processor performance optimization

Parallelization & optimization of codes for massively parallel computers

Improvement of the parallel scalability of existing codes already ported to
parallel platforms

Implementation of algorithms and mathematical library routines to
improve the efficiency of codes

Visualization of large data sets



The High Level Support Team

Improvement of the efficiency of algorithms

Try to reduce as much as possible the number of FLOPs needed to solve 
a given problem usage of highly efficient parallel algorithms

Example:
Using multigrid instead of the conjugated gradient method to solve a 
discretized PDE.

The multigrid method is very efficient but complex.
General purpose numerical libraries are usually not most efficient.
A geometric multigrid solver has to be adapted by hand

know how is mandatory

Some algorithms become inefficient/efficient for massively parallel usage.



The High Level Support Team

Final goal of HLST evolution

The more insight into the physics/work flow of a code, the better are 
the chances to significantly improve its efficiency.

The HLST members have to further enhance their HPC skills to  
become finally specialists in algorithms used in certain fields of    
plasma physics simulations.

Without such experts we will not make efficient use of the IFERC-CSC
petaflop computer for a significant number of plasma physics codes.



The IFERC-CSC computer

The system in operation:
One node consists of 16 cores with 58 GB available memory.

The total system is composed of 4410 nodes, i.e. 70,560 cores.

The peak performance is 1.3 PFLOPS.

The available memory is 256 TB.

The network is an InfiniBand (IB) interconnect.

The HLST gives support for IFERC-CSC! 



The High Level Support Team

HLST call

The call is launched once a year

Addressed to scientists from the EFDA associates

Maximal allocatable resources of 12 months (exceptions possible)

In the period 2009 2012:

46 proposals with a total request of 29.7 ppy received

42 projects have been approved

The project coordinators were located in: Austria, Finland, France,
Germany, Italy, Spain, Switzerland, and United Kingdom
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The Vlasov equation

The usual basis for kinetic treatments of a collisionless plasma is the Vlasov
equation:

∂f̂s

∂t
+ v · ∂f̂s

∂x
+

qs

ms
(E + v × B) · ∂f̂s

∂v
= 0

Here, f̂s(x,v, t) is the distribution function of the sth species in six-dimensional
phase space with the position x and the velocity v.

The Vlasov equation can be written in the following form:

Df̂s

Dt
def
=

∂f̂s

∂t
+

dx

dt
· ∂f̂s

∂x
+

dv

dt
· ∂f̂s

∂v
= 0

Its short form Df̂s/Dt = 0 means that the total derivative vanishes along the
characteristics given by the integration of the equations of motion.
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dx

dt
= v ,

dv

dt
=

qs

ms
(E + v × B) equations of motion

In physical terms:
If we follow the particles along their trajectories by integrating the equations
of motion in six-dimensional phase space, the initial value of f̂s(x(t0),v(t0)) will
not change.

This method is well known by the name “method of characteristics” and can
be used to evolve f̂s in time (initial value problem).

Roman Hatzky · HLST – core team



Max-Planck-Institut für Plasmaphysik, EURATOM Association

4th Summer School on Numerical Modelling for Fusion, 10th Oct. 2012, Garching

The Vlasov-Maxwell equations

The self-consistent electric and magnetic fields E and B which appear in the
force law are calculated from Poisson’s equation and Ampère’s law, two of the
Maxwell equations:

∇ · E =
̺

ǫ0
∇× B = µ0j +

1

c2

∂E

∂t

Here, the charge density ̺ and current density j are to be obtained at each
point in space from the appropriate moments of the distribution function itself:

̺(x) =
∑

s

qs

∫

f̂s d3v j(x) =
∑

s

qs

∫

vf̂s d3v

where the summation is over the species of particles present in the plasma.
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The PIC method

The Particle-In-Cell method (PIC) is a numerical technique used to solve a
certain class of partial differential equations:

• A total number of N (macro) particles in a Lagrangian frame are traced in
continuous phase space

• Moments of the distribution function (̺ and j) are computed simultaneously
on a Eulerian (stationary) mesh to solve the self-consistent field equations

The PIC method is a so-called Particle-Mesh (PM) method which includes
interactions of particles only through the average fields.
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Schematic diagram of the PIC method

⇒

⇐

Integration of the
equations of motion

Interpolation of the
fields from the mesh to
the particle locations

Interpolation of charge
and current source terms
onto the potential mesh

Computation of the
potentials on the mesh
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Monte Carlo evaluation of integrals

Of special interest is the evaluation of moments of the distribution function f ,
i.e. integrals over a volume element Ω0 of the phase-space volume V

I(Λ)
def
=

∫

Ω0

Λ(z)f(z) dz

where Λ(z) is a general function of the phase-space coordinates z.
For example, I(Λ) would be the number density in configuration space if Λ = 1,
and the integral is evaluated over the velocity space.

The sampling distribution of our Monte-Carlo sampling points (markers) is done
by a continuous probability density function g(z) such that

∫

V

g(z) dz = 1
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Now, the integral for I(Λ) can be written in the following form

E [X ]
def
=

∫

V

X(z)g(z) dz where X(z)
def
=

Λ(z)f(z)

g(z)

and E [X ] is the expected value of the random variable X. In addition, we define
the variance of X by

σ2 ≡ V [X ]
def
=

∫

V

(X(z) − E [X ])2g(z) dz

The crude Monte-Carlo estimator for the integral I(Λ) is given by the sum over
the marker weights wn

I(Λ) =
1

N

N∑

n=1

Λ(zn) wn ± ǫ where wn
def
=

f(zn)

g(zn)
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The statistical error is defined as:

ǫ
def
=

σ√
N

• The convergence rate of 1/
√

N is quite poor, i.e. to half the error one needs
four times more particles

• If possible the standard deviation σ
def
=

√
V should be reduced

Variance reduction methods:

• Importance sampling

• Stratified sampling

• Control variate method
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Liouville’s theorem

A phase-space volume element Ωp
def
= Ω(zp) moving in phase space according to

the equations of motion does not change its size, although in general it can
change its shape (Liouville’s theorem):

∫

Ωp

dz = const.

As the marker distribution and phase-space volumes Ωp are related by

gp =
V

Ωp
= const.

it follows for the marker weights from fp = const. that

wp =
fp

gp
= const.

Roman Hatzky · HLST – core team
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kinetics gyrokinetics

R

v B B

ρ

x

v‖

ω ≪ Ωc,s
def
= qsB

ms

ρ
def
= v⊥

Ωc,s
µ

def
=

v2
⊥

2B

f̂s(x,v, t) in 6-dim ⇒ fs(R, v‖, µ, t) in 5-dim

Roman Hatzky · HLST – core team



Max-Planck-Institut für Plasmaphysik, EURATOM Association

4th Summer School on Numerical Modelling for Fusion, 10th Oct. 2012, Garching

The gyrokinetic Vlasov equation (W.W. Lee, 1983)

The average of the Vlasov equation over the fast gyro-motion leaves just the
guiding center motion and thus reduces the dimensionality of the problem:

∂fs

∂t
+

dR

dt
· ∂fs

∂R
+

dv‖
dt

· ∂fs

∂v‖
= 0 ,

dµ

dt
= 0

Here, fs(R, v‖, µ, t) is the guiding center distribution function of the sth species in
the reduced five-dimensional phase space with the guiding center coordinate R

and the parallel velocity coordinate v‖ and the magnetic moment µ.

The equations of motion depend on the gyro-averaged electrostatic and mag-
netic potentials 〈φ〉 and 〈A〉.
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Equations of motion (p‖-formulation)

dR

dt
= v‖eB +

ms

qs

[
µB + v2

‖
BB⋆

‖
eB×∇B +

v2
‖

BB⋆
‖
(∇×B)⊥

]

+

− qs

ms

(

eB +
ms

qs

v‖
BB⋆

‖
[eB×∇B + (∇×B)⊥]

)

〈A‖〉 +
1

B⋆
‖
eB ×∇〈Ψeff〉

dv‖
dt

= −µ∇B ·
[

eB +
ms

qs

v‖
BB⋆

‖
(∇×B)⊥

]

+

− qs

ms

(

eB +
ms

qs

v‖
BB⋆

‖
[eB×∇B + (∇×B)⊥]

)

·∇〈Ψeff〉

where

B⋆
‖

def
= B +

ms

qs
v‖eB · (∇× eB), Ψeff

def
= φ − v‖A‖
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Potential equations

Quasineutrality equation (long wavelength approximation, valid up to k⊥ρi . 1):

−∇⊥ ·
(

ni

BΩc,i
∇⊥φ

)

︸ ︷︷ ︸

= 〈ni〉 − ne

polarization density

Parallel Ampère’s law (p‖-formulation):

−∇⊥ ·
[
(1 − βi)∇⊥A‖

]
+

(
βi

ρ2
i

+
βe

ρ2
e

)

A‖
︸ ︷︷ ︸

= µ0

(
〈j‖i〉 + j‖e

)

skin terms
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The discretized f

The full-f PIC approximation is given by a sum of δ functions:

f(R, v‖, µ, t) =
N∑

p=1

wp

Jred
δ[R − Rp(t)] δ[v‖ − v‖p(t)] δ[µ − µp(t0)]

with the Jacobian in the reduced phase space Jred = 2πB⋆
‖.

Each marker (macro particle, tracer, . . .) p is defined by:

• its position in the 5-dim phase space (Rp, v‖p, µp)

• its phase-space volume Ωp assigned by the initial marker distribution g(t0)

• its constant weight wp

Roman Hatzky · HLST – core team
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Discretization of potential equations

The potential equations are discretized
with a finite element method, e.g.:

A‖(x, t) =
∑

ν

cν(t)Λν(x)

where Λν(x) is a product of unidimen-
sional B-splines S of order k:

Λν(x) = Sk
l (x1)S

k
m(x2)S

k
n(x3)

Advantages of finite elements:

• Conservation laws, e.g. particle number and energy conservation for PIC are
consistently preserved

• Complicated geometries and non-equidistant meshes are easy to implement

Roman Hatzky · HLST – core team
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Discretization of Ampère’s law using Galerkin’s method

LHS:
∑

ν′

∫ [

(1 − βi)∇⊥Λν · ∇⊥Λν′ +
βi

ρ2
i

ΛνΛν′ +
βe

ρ2
e

ΛνΛν′

]

dx cν′ = A c

In matrix representation:

(L + Si + Se) c = A c where A
def
= L + Si + Se

The finite support of the finite elements Λν results in a sparse matrix A.

⇒ Use of parallel sparse matrix packages like e.g. IBM WSMP or PETSc

Roman Hatzky · HLST – core team
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The interpolation of the current onto the grid

The construction of the RHS is the so-called current assignment:

j‖i,ν
def
=

N∑

p=1

v‖pwi,p
1

2π

∫ 2π

0

Λν(Rp + ρi,p) dα

Projection of the weights wi,p in the form of gyro-rings onto the B-spline basis.

The charge assignment is a scatter operation,
e.g. each sample point contributes to 64 grid
points for cubic B-splines in 3-dim.

The figure shows linear interpolation for linear
B-splines in 2-dim.
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The interpolation of ∇〈A‖〉 from the grid

The gyro-averaged 〈∇A‖〉 is analytically represented within the B-spline basis:

∇〈A‖〉 ≈ 〈∇A‖〉 =
∑

ν

cν

2π

∫ 2π

0

∇Λ(R + ρi) dα

The Nav field vectors ∇A‖n on the gyro-ring are calculated from the B-spline
representation of the potential and then averaged.

The ∇A‖n calculation is a gather operation,
e.g. each sample point is assembled from 64
grid points for cubic B-splines in 3-dim.

The figure shows linear interpolation for linear
B-splines in 2-dim.
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The cancellation problem
The electron distribution function fe includes an adiabatic (Boltzmann) part
responding to A‖:

δfe = δf ad
e + δfnonad

e where δf ad
e = −ev‖fM,e

kBTe
A‖

The electron skin term in Ampère’s law coincides with the adiabatic current
term:

βe

ρ2
e

A‖ =
µ0n0e

2

me
A‖ = −µ0e

∫

d6Z δf ad
e v‖ δ(R− x) = µ0j

ad
‖e

⇓
In theory the skin terms cancel the adiabatic current terms.

−∇⊥ ·
[
(1 − βi)∇⊥A‖

]
= µ0

(

〈j‖i〉nonad + jnonad
‖e

)
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The PIC method expresses inseparably the adiabatic and nonadiabatic current.
⇓

Signal-to-noise problem when adiabatic electron current dominates.

jad
‖e

〈j‖i〉nonad + jnonad
‖e

≈ βe/ρ
2
eA‖

∇2
⊥A‖

=
µ0e

2n0A‖
me∇2

⊥A‖

cylinder≈ µ0e
2n0

mek2
⊥

The nonadiabatic part is the smaller fraction of the electron distribution for

• high beta cases, βe & 1 %

• the MHD limit, k⊥ → 0

Due to the signal-to-noise problem the numerical cancellation of the skin terms
is inaccurate which is called the “cancellation problem”.
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1/k2
⊥ dependency of the cancellation problem for a cylindrical configuration

1

k2
⊥

=
a2

(
m
r/a

)2

+ π2

where m is the poloidal mode num-
ber and the minimal kr is assumed.

0
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r/a

1/
(a

 k
⊥
)2

• The cancellation problem is most pronounced for the m = 0 mode
⇒ Negative effect on the accuracy of the zonal flows

• For m 6= 0 the cancellation problem is most pronounced at the edge

• The cancellation problem scales with a2
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The cancellation problem in the quasineutrality equation

Due to the symmetry fM,e(−v‖) = fM,e(v‖) of the Maxwellian there is no con-
tribution of the the adiabatic part δf ad

e to the electron number density ne, i.e.

−e2

∫
A‖

kBTe
δ(R − x) dR

∫

v‖fM,e dv
︸ ︷︷ ︸

=0

= 0

But, the statistical error ǫ of the according Monte Carlo integration can be large!

⇒ The cancellation problem has its counterpart in the quasineutrality equation.

R. Hatzky, A. Könies, and A. Mishchenko, Journal of Computational Physics, 225: p. 568–590 (2007).
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The electron distribution function in velocity space at the MHD-limit

adiabatic and nonadiabatic part
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⇒ The nonadiabatic part can be drastically smaller than the adiabatic part.
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Control variates as variance reduction method

One tries to utilize (strong) correlation between the observed variable X and
some auxiliary variable Y , the so called control variable whose expected value
E [Y ] = ν has to be known analytically.

The task is to estimate the expected value E [X ] = µ with a preferably smaller
standard deviation than

√

V [X ].

Hence, we define the variable Z which has the same expected value as E [X ] by

Z
def
= X − α(Y − ν) = Z̃ + αν where Z̃

def
= X − αY

with
E [Z] = E [Z̃] + αν = E [X ] − α(E [Y ] − ν) = E [X ].
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Only the variable Z̃ will be discretized by our control variate schemes as the
expected value ν is known analytically and can be added accordingly.

The variance of Z is

V [Z] = V [Z̃] = V [X − αY ] = V [X ] − 2αCov[X, Y ] + α2V [Y ]

where the covariance is defined by

Cov[X, Y ]
def
= E [(X − µ)(Y − ν)].

It follows the following condition:

Cov[X, Y ]

αV [Y ]
>

1

2
⇒ V [Z̃] < V [X ].
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Effective control variates

The auxiliary variable Y is an effective control variate if V [Z̃] < V [X ].

For PIC simulations one can use the knowledge about the initial state f(t0) of
the system to construct an effective control variate as long as the system does
not evolve too far from its initial state.

For such situations the usage of a control variate is a valuable enhancement of
the full-f PIC method which has naturally problems to resolve relatively small
changes of the system.

The standard error ǫ ∝
√

V [Z̃] (statistical noise) can be reduced in some cases

drastically.
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Construction of an effective control variates

A maximal reduction of the variance V [Z] is given by the optimal parameter

α⋆ def
=

Cov[X,Y ]

V [Y ]

which leads always to an optimal control variate. In practice, α⋆ has to be
estimated with a sufficiently small statistical error.

The corresponding optimal variance is given as

V [Z] = V [X ] − Cov2[X, Y ]

V [Y ]
= V [X ](1 − Corr2[X, Y ])

where the correlation coefficient is defined by

Corr[X, Y ]
def
=

Cov[X, Y ]
√

V [X ]
√

V [Y ]
with − 1 ≤ Corr[X, Y ] ≤ 1
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• The quality of the auxiliary variable Y as a control variate depends on the
correlation between the variables X and Y .

• As long as X and Y are correlated the optimal parameter α⋆ always reduces
the variance of V [Z] even if X and Y are negatively correlated.

• In practice, the optimal parameter α⋆ can be estimated from the Monte
Carlo data.

• The performance does not depend strongly on α when α is close to α⋆, where
the derivative dV [Z]/dα is zero.

• For very strong correlation between the variables X and Y the optimal pa-
rameter α⋆ can be approximated by one.
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Example of variance reduction by a control variate

f(x)
def
= a + b sin(x), g(x)

def
=

1

2π
where x ∈ [0, . . . , 2π]

E(f)
def
=

∫ 2π

0

f(x) g(x) dx ⇒ E(f) = a

V(f)
def
=

∫ 2π

0

(f(x) − E(f))2 g(x) dx = E(f 2) − [E(f)]2 ⇒ V(f) =
b2

2

• The parameter a influences only the expected value E.

• The parameter b influences only the variance V.
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Simple control variate

We choose the control variate:

f0(x)
def
=

{
c : 0 ≤ x ≤ π

−c : π < x ≤ 2π
and E(f0) = 0, V(f0) = c2

f − f0 = a ∓ c +
1

2π
b sin(x) ⇒ E(f − f0) = a, V(f − f0) =

b2

2
+ c2 − 2b

π
c

We have an effective control variate under the assumption:

V(f − f0) ≤ V(f) : 0 ≤ 2b

π
c − c2 ⇒ c ≤ 2b

π
with copt =

b

π
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Optimized control variate

We choose the optimized control variate:

f̃ (x)
def
= f − α⋆[f0 − E(f0)] where α⋆ def

=
Cov(f, f0)

V(f0)
=

b

πc

The optimized control variate is better than the simple control variate:

V(f̃) =
b2

2
− b2

π2
= V(f − f0(copt)) ⇒ V(f̃) ≤ V(f − f0(c))

We always have V(f̃) ≤ V(f) and for α⋆ = 0 ⇒ V(f̃) = V(f).
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Second example1 of variance reduction by a control variate

f(x)
def
= ax + b sin(x), g(x)

def
=

1

2π
where x ∈ [0, . . . , 2π]

E(f)
def
=

∫ 2π

0

f(x) g(x) dx, V(f)
def
=

∫ 2π

0

(f(x) − E(f))2 g(x) dx

⇒ E(f) = πa and V(f) =
π2

3
a2 +

1

2
b2 − 2ab

1private communication R. Kleiber
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Simple control variate

We choose the control variate:

f0(x)
def
= ax and E(f0) = πa, V(f0) =

π2

3
a2

f − f0 =
1

2π
b sin(x) ⇒ E(f − f0) = 0, V(f − f0) =

1

2
b2

We have an effective control variate under the assumption:

V(f − f0) ≤ V(f) : 0 ≤ π2

3
a2 − 2ab ⇒ b ≤ π2

6
a
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Optimized control variate

We choose the optimized control variate:

f̃ (x)
def
= f − α⋆[f0 − E(f0)] where α⋆ def

=
Cov(f, f0)

V(f0)
= 1 − ab

V(f0)

The optimized control variate is always better than the simple control variate:

V(f̃) =

(

1 − 6

π2

)
1

2
b2 =

(

1 − 6

π2

)

︸ ︷︷ ︸
≈ 0.39

V(f − f0) ⇒ V(f̃) < V(f − f0)

We always have V(f̃) ≤ V(f) and for α⋆ = 0 ⇒ V(f̃) = V(f).
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Charge assignment with a control variate

b(t) =
1

N

N∑

p=1

wp Λ(Rp) ≃
1

N

N∑

p=1

Ωp [fp − f0(Rp(t),vp(t))]
︸ ︷︷ ︸

Z̃=X−Y

Λ(Rp) +

∫

f0 Λ dR dv
︸ ︷︷ ︸

E [Y ]=ν

=
1

N

N∑

p=1

[wp − Ωpf0,p(t)]
︸ ︷︷ ︸

w̃p(t)

Λ(Rp) + b̂ where b̂
def
=

∫

f0 Λ dR dv

• The B-spline coefficient vector b̂ is the result of the analytic projection of
the control variate f0 onto the B-spline basis.

• As long as the control variate is time independent the B-spline coefficient
vector b̂ has to be calculated only once at the initialization.
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The δf method

The popular δf method chooses the following ansatz:

δf = f − f0

For PIC simulations it is only used as an efficient noise reduction method if

δf ≪ f0 = fM

It can be interpreted as a control variate method with α = 1:

b =
1

N

N∑

p=1

Ωp[fp − fM,p] Λ(Rp) + b̂ =
1

N

N∑

p=1

Ωpδfp Λ(Rp) + b̂ =
1

N

N∑

p=1

w̃p(t) Λ(Rp) + b̂

A.Y. Aydemir, Physics of Plasmas, 1, p. 822–831 (1994).
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The adjustable control variate

An effective control variate can be constructed under the assumption of the
presence of a dominant part responding adiabatically to the magnetic potential
in the perturbation of the distribution function of the electrons:

δfe ≈ δf ad
e = −ev‖fM,e

kBTe
A‖

We define the stochastic variable Z̃ by introducing a “noise reduced” species
of electron marker weights:

w̄e,p
def
= Ωe,p(δfe − δf ad

e ) = w̃e,p + Ωe,p

ev‖fM,e

kBTe
A‖

∣
∣
∣
∣
Rp,v‖p,µp

Problem: We don’t know A‖ in advance!
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Ampère’s law discretized in a B-spline finite element basis

(L + Si + Se) c = µ0〈j‖i〉 + µ0j‖e − Jad
‖e c

︸ ︷︷ ︸

Z̃=X−Y

+ Sec︸︷︷︸
E [Y ]=ν

Capital letters depict matrices, c is the B-spline coefficient vector to be solved
for and j‖’s are the coefficient vectors after current assignment of the weights.

⇓
The cancellation problem can be resolved analytically by eliminating the electron
skin term Sec on both sides:

(L + Si + Jad
‖e ) c = µ0(〈j‖i〉 + j‖e)

⇓
This “noise reduced” matrix equation can be solved for c to achieve A‖(x).
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Caveats of the scheme

The matrix operator Jad
‖e depends on the marker positions (R, v‖, v⊥):

• The matrix has to be built up every time step

• In case of a direct solver a costly Cholesky decomposition is obligatory at
every time step

The iterative scheme

c = (L + S)−1[I − M ]−1b = (L + S)−1

(

b +
∞∑

i=1

b(i)

)

where

S
def
= (Si + Se), M

def
= (Se − Jad

‖e )(L + S)−1, b
def
= µ0(〈j‖i〉 + j‖e), b(i) def

= M i b

We use the Neumann series with the sufficient convergence condition ‖M‖ < 1.
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The iterative scheme

The solution vector c = limi→∞ c(i) can be calculated iteratively by using the

magnetic potential A
(n)
‖ from the previous iteration:

c(0) = (L + Si + Se)
−1 µ0(〈j‖i〉 + j‖e)

· · ·
c(n+1) = (L + Si + Se)

−1[µ0(〈j‖i〉 + j‖e) + (Se − Jad
‖e )c(n)]

The convergence condition ‖(Se − Jad
‖e )(L + Si + Se)

−1‖ < 1 seems to be benign.

Usually just one or two iterations are sufficient!

R. Hatzky, A. Könies, and A. Mishchenko, Journal of Computational Physics, 225: p. 568–590 (2007).
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Numerical results

Shear Alfvén wave in the MHD limit k⊥ → 0

Slab model:

kxρi = 0.023
kyρi = 0.015
kzρi = 7.43 × 10−4

β = 3.04 %

0.41
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0.47

x 10
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/ω

ci
conv. δf method
ACV method, one iteration
ACV method, two iterations
ACV method, three iterations

Reduction of the number of markers by more than four orders of magnitude!
R. Hatzky, A. Könies, and A. Mishchenko, Journal of Computational Physics, 225: p. 568–590 (2007).
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Global linear tokamak simulation of a low n TAE with the GYGLES code
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full lines:                              reduced MHD (CKA)
dashed lines with symbols: gyro-kinetic (GYGLES)

ωGYGLES= 7.75.10
5
 rad/s

 ωCKA     = 7.83.10
5
 rad/s 

✷

✷
 value for CKA from reduced MHD 

   without sound coupling 
   sound effects as a correction 
   from the shift of the tip 
   of the continuum

γGYGLES=-1.6.10
4
 s

-1

A. Könies et al., 12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems, 2011.
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Global electromagnetic stellarator simulation with the EUTERPE code

• Wendelstein 7-X equilibrium from VMEC code

• Linear simulation of electromagnetic ITG with β = 0, . . . , 5 %

• Fully kinetic electrons ⇒ small time step

• Marker numbers: Ni = 32 · 106, Ne = 128 · 106

• Grid size (s, ϑ, ϕ) : 100 × 128 × 128

• Just one iteration for the adjustable control variate scheme needed

• Execution time on HPC-FF: ≈ 100 000 CPU hours on 128 cores

EUTERPE originates from CRPP; now it is developed at IPP by R. Kleiber, R. Hatzky, and M. Borchardt
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The electrostatic and electromagnetic simulation of ITG modes in W7-X
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• There is a significant difference between both models for β > 0.1 %

• It is possible to identify three regimes for the electromagnetic case
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Electromagnetic Fourier spectra of an ITG mode in W7-X for β = 0.1 %
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Electromagnetic Fourier spectra of an ITG mode in W7-X for β = 0.5 %
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Electromagnetic Fourier spectra of an ITG mode in W7-X for β = 5.0 %
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The mode has slab-like character!
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Global nonlinear simulation in a tokamak with the NEMORB code

A. Bottino et al., IEEE Transactions on Plasma Science, 38, p. 2129–2135 (2010).
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Summary

• The established δf scheme for PIC is a control variate method belonging to
a group of Monte Carlo methods used for variance reduction.

• There are no limitations concerning the geometry of the configuration.

• An iterative implementation of an adaptive control variate can be used to
solve the electromagnetic “cancellation” problem very efficiently.

• The method works for linear and nonlinear simulations and has been imple-
mented into the codes: EUTERPE, GYGLES and NEMORB.

• Gyrokinetic electromagnetic PIC simulations become more and more stan-
dard.
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