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The Vlasov equation

The usual basis for kinetic treatments of a collisionless plasma is the Vlasov
equation:

∂f̂s

∂t
+ v · ∂f̂s

∂x
+

qs

ms
(E + v × B) · ∂f̂s

∂v
= 0

Here, f̂s(x,v, t) is the distribution function of the sth species in six-dimensional
phase space with the spatial coordinate x and the velocity coordinate v.

The Vlasov equation can be written in the following form:

Df̂s

Dt
def
=

∂f̂s

∂t
+

dx

dt
· ∂f̂s

∂x
+

dv

dt
· ∂f̂s

∂v
= 0

where
dx

dt
= v ,

dv

dt
=

qs

ms
(E + v × B) equations of motion (1)

Roman Hatzky · HLST – core team



Max-Planck-Institut für Plasmaphysik, EURATOM Association

Summer School on HPC Challenges in Computational Sciences, 4th – 7th Oct. 2010, Acireale

Its short form Df̂s/Dt = 0 means that the total derivative vanishes along the
characteristics given by the integration of Eqs. (1).

In physical terms:
If we follow the particles along their trajectories by integrating the equa-
tions of motion, Eqs. (1), in six-dimensional phase space, the initial value of

f̂s(x(t0),v(t0)) will not change.

This method is well known by the name “method of characteristics” and can
be used to evolve f̂s in time (initial value problem).

Roman Hatzky · HLST – core team



Max-Planck-Institut für Plasmaphysik, EURATOM Association

Summer School on HPC Challenges in Computational Sciences, 4th – 7th Oct. 2010, Acireale

The Vlasov-Maxwell equations

The self-consistent electric and magnetic fields E and B which appear in the
force law are calculated from Poisson’s equation and Ampère’s law, two of the
Maxwell equations:

ǫ0∇ · E = ρ ∇× B = µ0j +
1

c2

∂E

∂t

Here, the charge density ρ and current density j are to be obtained at each
point in space from the appropriate moments of the distribution function itself:

ρ(x, t) =
∑

s

q

∫

f̂s d3v j(x, t) =
∑

s

q

∫

vf̂s d3v

where the summation is over the species of particles present in the plasma.
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The PIC method

The Particle-In-Cell method (PIC) is a numerical technique used to solve a
certain class of partial differential equations:

• Individual (macro) particles in a Lagrangian frame are traced in continuous
phase space

• Moments of the distribution function are computed simultaneously on a
Eulerian (stationary) mesh to solve the self-consistent field equations

The PIC method is a so-called Particle-Mesh (PM) method which includes
interactions of particles only through the average fields.

Area of application in plasma physics:
laser-plasma interactions, electron acceleration and ion heating in the auroral
ionosphere, magnetic reconnection, . . ., gyrokinetics
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Schematic diagram of the PIC method

⇒

⇐

Integration of the
equations of motion

Interpolation of the
fields from the mesh to
the particle locations

Interpolation of charge
and current source terms
onto the potential mesh

Computation of the
potentials on the mesh
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Monte Carlo evaluation of integrals

Of special interest is the evaluation of moments of the distribution function f
over the phase space volume V , i.e. general integrals of the form

I(Λ)
def
=

∫

V

Λ(z)f(z) dz

where Λ(z) is a general function of the phase-space coordinates z.
For example, I(Λ) would be the number density in configuration space if Λ = 1,
and the integral is evaluated over the velocity space.

The sampling distribution of our Monte-Carlo sampling points (marker) is done
by a continuous probability density function g(z) such that

∫

V

g(z) dz = 1
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Now, the integral for I(Λ) can be written in the following form

E [λ(z)]
def
=

∫

V

λ(z)g(z) dz where λ(z)
def
=

Λ(z)f(z)

g(z)

and E [λ] is the expected value of the random variable λ. In addition, we define
the variance of λ by

σ2 ≡ V [λ(z)]
def
=

∫

V

{λ(z) − E [λ(z)]}2 g(z) dz

The crude Monte-Carlo estimator for the integral I(Λ) is given by the sum over
the marker weights wn

I(Λ) =
1

N

N∑

n=1

Λ(zn)wn + ǫ where ǫ
def
=

σ√
N

, wn
def
=

f(zn)

g(zn)
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Liouville’s theorem

A phase space volume Ωp
def
= Ω(zp) moving in phase space according to the

equations of motion does not change its volume, although in general it can
change its shape (Liouville’s theorem):

∫

Ωp

dz = const.

As the marker distribution and phase space volumes Ωp are related by

gp =
V

Ωp
= const.

it follows for the marker weights from fp = const. that

wp =
fp

gp
= const.
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Importance sampling

The standard error ǫ can be reduced by e.g. increasing the number of mark-
ers N . However, the convergence is not very fast due to ǫ ∝ 1/

√
N .

In addition, one can reduce the error ǫ by a reduction of the variance σ2.

The optimal choice is to set g(z) = |f(z)|, i.e. allocate more markers in regions
where |f(z)| is large. This method is called “importance sampling”:

wn =
f(zn)

g(zn)
=

f(zn)

|f(zn)|
= const.

Note, that at the initialization of the PIC method one knows f(z, t0) analytically
and can use it for an importance sampling.
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Difference between the Eulerian and Monte Carlo method

Midpoint integration

For an equidistant mesh the sampling distance h is correlated with the number
of sampling points N by

h ∝ 1

N

Accordingly, we have to distribute the sampling points over d dimensions by

h ∝ 1

N
1
d

The error term of the Midpoint integration is:

EM = O(h2) = O
(

1

N
2
d

)
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Monte Carlo integration

The error term of the Monte-Carlo integration is:

EMC = O
(

1

N
1
2

)

We can compare the convergence rates of both integration methods

O
(

1

N
1
2

)

< O
(

1

N
2
d

)

when d > 4

to see that Monte-Carlo integration will converge faster for quintuple multiple
integrals.

⇒ The Monte-Carlo method has its advantages in high dimensional spaces.
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Quasi-Monte Carlo method

This method loads the sampling points (particles) as smoothly as possible in
(phase) space without imposing strong correlations.

Two low-discrepancy sequences with their lower error bounds:

• the Sobol’s quasirandom sequence

ES ≤ O
[
(log10 N)d

N

]

• the bit-reversed numbers of Hammersley’s sequence:

EH ≤ O
[
(log10 N)d−1

N

]

⇒ Only helps at the start of the PIC simulation (“quiet start” conditions).
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The gyrokinetic Vlasov equation (W.W. Lee, 1983)

The average of the Vlasov equation over the fast gyro-motion leaves just the
guiding center motion and thus reduces the dimensionality of the problem:

∂fs

∂t
+

dR

dt
· ∂fs

∂R
+

dv‖
dt

· ∂fs

∂v‖
= 0 ;

dµ

dt
= 0 , µ

def
=

v2
⊥

2B

Here, f(R, v‖, µ, t) is the guiding center distribution function of the sth species in
the reduced five-dimensional phase space with the guiding center coordinate R

and the parallel velocity coordinate v‖ and the magnetic moment µ.

vgc(〈φ〉, 〈A〉) def
=

dR

dt
, agc(〈φ〉, 〈A〉) def

=
dv‖
dt

guiding center velocity/acceleration

with the gyro-averaged electrostatic and magnetic potentials 〈φ〉 and 〈A〉.
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Differences in the numerical models

• Local approximation vs. global model

– Covering just a local “flux-tube” or the whole physical domain

• Adiabatic vs. kinetic electrons

– Taking the full kinetics of all species into account

• Electrostatic vs. electromagnetic model

– Taking self generated currents and Ampère’s law into account

So far none of the codes covers all physical aspects!
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Numerical methods for solving the gyrokinetic equations

• Eulerian

– Fixed grid in 5-dim phase space

– Finite difference discretization of differential operators

• Semi-Lagrangian

– Fixed grid in 5-dim phase space

– Trace back of characteristics in time to evolve distribution function

• Lagrangian: Particle-in-Cell (PIC), i.e. Monte Carlo method

– Follow particle trajectories in 5-dim phase space

– Project particles to real space to compute charge and current density

All three methods need additional electrostatic and magnetic potential solvers.
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The discretized f

The full-f PIC approximation is given by a sum of δ functions:

f(R, v‖, µ, t) =

N∑

p=1

wp

Jred
δ(R − Rp(t)) δ(v‖ − v‖p(t)) δ(µ − µp(t0))

with the Jacobian in the reduced phase space Jred = 2πB⋆
‖.

Each marker (macro particle, tracer, . . .) p is defined by:

• its position in the 5-dim phase space (Rp, v‖p, µp)

• its phase-space volume Ωp assigned by the initial marker distribution g(t0)

• its constant weight wp

• its averaged value of fp = wp/Ωp over the phase-space volume Ωp

Roman Hatzky · HLST – core team



Max-Planck-Institut für Plasmaphysik, EURATOM Association

Summer School on HPC Challenges in Computational Sciences, 4th – 7th Oct. 2010, Acireale

Time integrators for the equations of motion

The time integrator should have a low storage and should be efficient.

• Explicit time integrators are usually easy to implement but have a time step
criterion which can be quite restrictive.

• Implicit time integrators are more complex and costly (e.g. due to solving
of a matrix equation) but have no time step criterion.

Quite popular for PIC are explicit Runge-Kutta schemes of O[(∆t)4]:

• Classical Runge-Kutta, four stages, storage requirement of 4N

• Low-storage Runge-Kutta, four stages, storage requirement of 3N

• Very low-storage Runge-Kutta, six stages, storage requirement of 2N
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Discretization of the electrostatic potential equation

The Helmholtz type electrostatic po-
tential equation is discretized with a fi-
nite element method:

φ(x, t) =
∑

ν

φν(t)Λν(x)

where Λµ(x) is a product of unidimen-
sional B-splines S of order k:

Λµ(x) = Sk
l (r)Sk

m(χ)Sk
n(ϕ)
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B-splines of different order
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Some properties of B-splines

Partition of unity:
The sequence provides (Bjk) a positive and local partition of unity, that is, each
(Bjk) is positive on (tj . . . tj+k), is zero off [tj . . . tj+k], and

∑

j

Bjk(x) = 1

Differentiation:

D




∑

j

αjBjk



 = (k − 1)
∑

j

αj − αj−1

tj+k−1 − tj
Bj,k−1

The first derivative of a spline function
∑

j αjBjk can be found simply by dif-
ferencing its B-spline coefficients, thereby obtaining the B-spline coefficients of
its first derivative, a spline one order lower.
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Tensor product of B-splines:

B-splines can be extended to higher dimensions, e.g. three dimensions:

Blmn(x)
def
= Bl(x) Bm(y) Bn(z)

Monograph: Carl de Boor, A practical guide to splines, Revised edition, Springer-Verlag 2001.

Advantages of finite elements (B-splines):

• Conservation laws, e.g. particle number and energy conservation for PIC are
consistently preserved

• Complicated geometries and non-equidistant meshes are easy to implement
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Discretization using Galerkin’s method

en0

kBTe
φ −∇⊥ ·

(
n0

BΩi
∇⊥φ

)

= 〈ni〉 ⇒
∑

ν′
Aνν′ φν′(t) = bν(t)

1. Insert the discretized form of φ(x, t) =
∑

ν′ φν′(t)Λν′(x)

2. Multiply the equation by a test function Λν(x)

3. Integrate the whole equation over the entire plasma volume

LHS:
∑

ν′

∫ (
n0

BΩi
∇⊥Λν · ∇⊥Λν′ +

en0

kBTe
ΛνΛν′

)

dx φν′(t)
def
=

∑

ν′
Aνν′ φν′(t)

Polarization density (Laplacian operator): integrated by parts (weak form)
⇒ Discretization consists of B-splines and B-spline first derivatives only
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RHS:
N∑

p=1

wp
1

2π

∫ 2π

0

∫

Λν(x) δ(Rp + ρip − x) dx dα =
N∑

p=1

wp
1

2π

∫ 2π

0

Λν(Rp + ρip) dα
def
= bν(t)

using

1. The definition of the gyro-averaged ion density which smears out the density
along the gyro-ring of radius ρi:

〈ni〉 def
=

∫

f δ(R + ρi − x) d6Z =

∫

f δ(R + ρi − x) B⋆
‖ dR dv‖ dµ dα

2. The discretized f :

f =
N∑

p=1

1

2πB⋆
‖
wp(t) δ(R − Rp(t)) δ(v‖ − v‖p(t)) δ(µ − µp(t0))
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The interpolation of the density onto the grid

The construction of the RHS is the so-called charge assignment:

bν(t)
def
=

N∑

p=1

wp
1

2π

∫ 2π

0

Λν(Rp + ρip) dα

Projection of the weights wp in the form of gyro-rings onto the B-spline basis.

The charge assignment is a scatter operation,
e.g. each sample point contributes to 64 grid
points for cubic B-splines in 3-dim.

The figure shows linear interpolation for linear
B-splines in 2-dim.
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Adaptive gyro-average (Hatzky, et al., 2002)

The number of the sample points on
the gyro-ring is linearly increased from
a minimum of 4 to a maximum of 32
according to the size of the gyro-radius.
The equidistantly distributed points are
rotated for each marker by a random
angle.

The figure shows the relative frequency
of the total number of sample points on
all gyro-rings.

⇒ Better approximation of the integral over the gyro-ring
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Solving the electrostatic potential equation

The following matrix equation has to be solved:
∑

ν′
Aνν′ φν′(t) = bν(t)

where the matrix A is symmetric, positive definite and time-independent.

For 2-dim problems direct solvers are quite useful as the Cholesky decomposition
has to be performed only once at the initialization. At each time step the very
efficient backsolve can be applied.
⇒ direct (parallel) sparse matrix packages, e.g. IBM WSMP

For 3-dim problems iterative solvers become mandatory. The conjugate gradient
method is very efficient and can be combined with appropriate preconditioners.
⇒ iterative parallel sparse matrix packages, e.g. PETSc
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The interpolation of the electric field from the grid

The gyro-averaged electrostatic potential 〈φ〉 is defined by:

〈φ〉 def
=

1

2π

∫ 2π

0

∫

φ(x) δ(R + ρi − x) dx dα =
1

2π

∫ 2π

0

φ(R + ρi) dα

The gyro-averaged electric field 〈E〉 is defined by:

〈E〉 def
= −∇R〈φ〉 =

1

2π

∫ 2π

0

−∇Rφ(x)

∣
∣
∣
∣
x=R+ρi

dα + O(ǫB)

Inserting the discretized form of φ(x, t) =
∑

ν φν(t)Λν(x) gives:

〈E〉 = −
∑

ν

φν

2π

∫ 2π

0

∇Λ(R + ρi) dα + O(ǫB)
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The gyro-averaged electric field 〈E〉 is an analytic differential of the potential
represented by the B-splines, i.e., the gradient is computed exactly using:

∇Λν(s, ϑ, ϕ) =
∂Λν

∂s
∇s +

∂Λν

∂ϑ
∇ϑ +

∂Λν

∂ϕ
∇ϕ

The Nav field vectors En on the gyro-ring are calculated from the B-spline
representation of the potential and then averaged.

The En calculation is a gather operation, e.g.
each sample point is assembled from 64 grid
points for cubic B-splines in 3-dim.

The figure shows linear interpolation for linear
B-splines in 2-dim.
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Control variates as variance reduction method

One tries to utilize (strong) correlation between the observed variable X and
some auxiliary variable Y , the so called control variable whose expected value
E [Y ] = ν has to be known analytically.

The task is to estimate the expected value E [X ] = µ with a preferably smaller
standard deviation than V [X ].

Hence, we define the variable Z which has the same expected value as E [X ] by

Z
def
= X − α(Y − ν) = Z̃ + αν where Z̃

def
= X − αY

with
E [Z] = E [Z̃] + αν = E [X ] − α(E [Y ] − ν) = E [X ].
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Only the variable Z̃ will be discretized by our control variate schemes as the
expected value ν is known analytically and can be added accordingly.

The variance of Z is

V [Z] = V [Z̃] = V [X − αY ] = V [X ] − 2αCov[X, Y ] + α2V [Y ]

where the covariance is defined by

Cov[X, Y ]
def
= E [(X − µ)(Y − ν)].

It follows the following condition:

Cov[X, Y ]

αV [Y ]
>

1

2
⇒ V [Z̃] < V [X ].
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Effective control variates

The auxiliary variable Y is an effective control variate if V [Z̃] < V [X ].

For PIC simulations one can use the knowledge about the initial state f(t0) of
the system to construct an effective control variate as long as the system does
not evolve too far from its initial state.

For such situations the usage of a control variate is a valuable enhancement of
the full-f PIC method which has naturally problems to resolve relatively small
changes of the system.

The standard error ǫ ∝
√

V [Z̃] (statistical noise) can be reduced in some cases

drastically.
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Construction of an effective control variates

A maximal reduction of the variance V [Z] is given by the optimal parameter

α⋆ def
=

Cov[X,Y ]

V [Y ]

which leads always to an optimal control variate. In practice, α⋆ has to be
estimated with a sufficiently small statistical error.

The corresponding optimal variance is given as

V [Z] = V [X ] − Cov2[X, Y ]

V [Y ]
= V [X ](1 − Corr2[X, Y ])

where the correlation coefficient is defined by

Corr[X, Y ]
def
=

Cov[X, Y ]
√

V [X ]
√

V [Y ]
with − 1 ≤ Corr[X, Y ] ≤ 1
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Control variates as variance reduction method

One tries to utilize (strong) correlation between the observed variable X and
some auxiliary variable Y , the so called control variable whose expected value
E [Y ] = ν has to be known analytically.

The task is to estimate the expected value E [X ] = µ with a preferably smaller
standard deviation than V [X ].

Hence, we define the variable Z which has the same expected value as E [X ] by

Z
def
= X − α(Y − ν) = Z̃ + αν where Z̃

def
= X − αY

The parameter α will be used to further optimize the variance reduction property
of the control variate.
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The expected value of Z is as predicted

E [Z] = E [Z̃] + αν = E [X ] − α(E [Y ] − ν) = E [X ].

Only the variable Z̃ will be discretized by our control variate schemes as the
expected value ν is known analytically and can be added at any time.

The variance of Z is

V [Z] = V [Z̃] = V [X − αY ] = V [X ] − 2αCov[X, Y ] + α2V [Y ]

where the covariance is defined by

Cov[X, Y ]
def
= E [(X − µ)(Y − ν)].

We seek for the case V [Z] < V [X ] to reduce the statistical error.
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Effective control variates

The auxiliary variable Y is an effective control variate if the correlation is strong
enough, i.e.

Cov[X, Y ]

αV [Y ]
>

1

2
⇒ V [Z̃] < V [X ].

For PIC simulations one can use the knowledge about the initial state f(t0) of
the system to construct an effective control variate as long as the system does
not evolve too far from its initial state.

For such situations the usage of a control variate is a valuable enhancement of
the full-f PIC method which has naturally problems to resolve relatively small
changes of the system.

The standard error ǫ (statistical noise) can be reduced in some cases drastically.
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Construction of an effective control variates

A maximal reduction of the variance V [Z] is given by the optimal parameter

α⋆ def
=

Cov[X,Y ]

V [Y ]

which leads always to an optimal control variate. In practice, α⋆ has to be
estimated with a sufficiently small statistical error.

The corresponding optimal variance is given as

V [Z] = V [X ] − Cov2[X, Y ]

V [Y ]
= V [X ](1 − Corr2[X, Y ])

where the correlation coefficient is defined by

Corr[X, Y ]
def
=

Cov[X, Y ]
√

V [X ]
√

V [Y ]
with − 1 ≤ Corr[X, Y ] ≤ 1
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• The quality of the auxiliary variable Y as a control variate depends on the
correlation between the variables X and Y .

• As long as X and Y are correlated the optimal parameter α⋆ always reduces
the variance of V [Z] even if X and Y are negatively correlated.

• In practice, the optimal parameter α⋆ can be estimated from the Monte
Carlo data.

• The performance does not depend strongly on α when α is close to α⋆, where
the derivative dV [Z]/dα is zero.

• For very strong correlation between the variables X and Y the optimal pa-
rameter α⋆ can be approximated by one.
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Charge assignment with a control variate

To simplify matters we consider the charge assignment without gyro-average:

b(t) =
N∑

p=1

Ωp [fp − αf0(Rp(t),vp(t))]
︸ ︷︷ ︸

Z̃=X−αY

Λ(Rp) + α

∫

f0(R,v)Λ(R)J dR dv
︸ ︷︷ ︸

E [Y ]=ν

=
N∑

p=1

[wp − αΩpf0p]Λ(Rp) + αb̂ where b̂
def
=

∫

f0(R,v)Λ(R)J dR dv

• The B-spline coefficient vector b̂ is the result of the analytic projection of
the control variate f0 onto the B-spline basis.

• As long as the control variate is time independent the B-spline coefficient
vector b̂ has to be calculated only once at the initialization.
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The δf method

The popular δf method chooses the following ansatz:

δf = f − f0

For PIC simulations it is only used as an efficient noise reduction method if

δf ≪ f0

It can be interpreted as a control variate method which has set α = 1:

b(t) =

N∑

p=1

Ωp[fp − f0p(t)]Λ(Rp) + b̂ =

N∑

p=1

Ωpδfp(t) Λ(Rp) + b̂

It usually integrates an unnecessary evolution equation to derive δfp(t).
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Optimized marker loading (Hatzky, et al., 2002)

When using a control variate only the part f −αf0 is disretized by the markers.

The optimal marker distribution would be g(z, t) = |f(z, t)−αf0(z)|, i.e. allocate
more markers in regions where |f − αf0| is large (“importance sampling”).

Difficulties:

• The “ad hoc” marker distribution g(z, tn) is not known.

• It is very complicated to redistribute the markers during the simulation.

Solution: Iterative treatment

• Use a precursor run to derive information about a better suited marker
distribution for the whole simulation interval.

• Subsequently, modify the initial marker distribution of an optimized run.
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Summary

• PIC simulations are widely-used in plasma physics, e.g. in gyrokinetics.

• The PIC method is relatively intuitive and straightforward to implement.

• PIC simulations can consist of more than 1010 markers which makes even
3-dimensional simulation domains with full velocity space possible.

• PIC simulations do not evolve “numerical diffusion”.

• The PIC method is easy to parallelize on computers.

Disadvantage:

• The PIC method suffers from “statistical noise”.
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