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The Vlasov equation

The usual basis for kinetic treatments of a collisionless plasma is the Vlasov
equation:

∂f̂s

∂t
+ v · ∂f̂s

∂x
+

qs

ms
(E + v × B) · ∂f̂s

∂v
= 0

Here, f̂s(x,v, t) is the distribution function of the sth species in six-dimensional
phase space with the spatial coordinate x and the velocity coordinate v.

The Vlasov equation can be written in the following form:

Df̂s

Dt
def
=

∂f̂s

∂t
+

dx

dt
· ∂f̂s

∂x
+

dv

dt
· ∂f̂s

∂v
= 0

where
dx

dt
= v ,

dv

dt
=

qs

ms
(E + v × B) equations of motion (1)
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Its short form Df̂s/Dt = 0 means that the total derivative vanishes along the
characteristics given by the integration of Eqs. (1).

In physical terms:
If we follow the particles along their trajectories by integrating the equa-
tions of motion, Eqs. (1), in six-dimensional phase space, the initial value of

f̂s(x(t0),v(t0)) will not change.

This method is well known by the name “method of characteristics” and can
be used to evolve f̂s in time (initial value problem).
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The Vlasov-Maxwell equations

The self-consistent electric and magnetic fields E and B which appear in the
force law are calculated from Poisson’s equation and Ampère’s law, two of the
Maxwell equations:

ǫ0∇ · E = ̺ ∇× B = µ0j +
1

c2

∂E

∂t

Here, the charge density ̺ and current density j are to be obtained at each
point in space from the appropriate moments of the distribution function itself:

̺(x, t) =
∑

s

qs

∫

f̂s d3v j(x, t) =
∑

s

qs

∫

vf̂s d3v

where the summation is over the species of particles present in the plasma.
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The PIC method

The Particle-In-Cell method (PIC) is a numerical technique used to solve a
certain class of partial differential equations:

• Individual (macro) particles in a Lagrangian frame are traced in continuous
phase space

• Moments of the distribution function are computed simultaneously on a
Eulerian (stationary) mesh to solve the self-consistent field equations

The PIC method is a so-called Particle-Mesh (PM) method which includes
interactions of particles only through the average fields.

Area of application in plasma physics:
laser-plasma interactions, electron acceleration and ion heating in the auroral
ionosphere, magnetic reconnection, . . ., gyrokinetics
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Schematic diagram of the PIC method

⇒

⇐

Integration of the
equations of motion

Interpolation of the
fields from the mesh to
the particle locations

Interpolation of charge
and current source terms
onto the potential mesh

Computation of the
potentials on the mesh
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Monte Carlo evaluation of integrals

Of special interest is the evaluation of moments of the distribution function f
over the phase space volume V , i.e. general integrals of the form

I(Λ)
def
=

∫

V

Λ(z)f(z) dz

where Λ(z) is a general function of the phase-space coordinates z.
For example, I(Λ) would be the number density in configuration space if Λ = 1,
and the integral is evaluated over the velocity space.

The sampling distribution of our Monte-Carlo sampling points (marker) is done
by a continuous probability density function g(z) such that

∫

V

g(z) dz = 1
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Now, the integral for I(Λ) can be written in the following form

E [λ(z)]
def
=

∫

V

λ(z)g(z) dz where λ(z)
def
=

Λ(z)f(z)

g(z)

and E [λ] is the expected value of the random variable λ. In addition, we define
the variance of λ by

σ2 ≡ V [λ(z)]
def
=

∫

V

{λ(z) − E [λ(z)]}2 g(z) dz

The crude Monte-Carlo estimator for the integral I(Λ) is given by the sum over
the marker weights wn

I(Λ) =
1

N

N∑

n=1

Λ(zn)wn ± ǫ where ǫ
def
=

σ√
N

, wn
def
=

f(zn)

g(zn)
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Liouville’s theorem

A phase space volume Ωp
def
= Ω(zp) moving in phase space according to the

equations of motion does not change its volume, although in general it can
change its shape (Liouville’s theorem):

∫

Ωp

dz = const.

As the marker distribution and phase space volumes Ωp are related by

gp =
V

Ωp
= const.

it follows for the marker weights from fp = const. that

wp =
fp

gp
= const.
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The gyrokinetic Vlasov equation (W.W. Lee, 1983)

The average of the Vlasov equation over the fast gyro-motion leaves just the
guiding center motion and thus reduces the dimensionality of the problem:

∂fs

∂t
+

dR

dt
· ∂fs

∂R
+

dv‖
dt

· ∂fs

∂v‖
= 0 ;

dµ

dt
= 0 , µ

def
=

v2
⊥

2B

Here, fs(R, v‖, µ, t) is the guiding center distribution function of the sth species in
the reduced five-dimensional phase space with the guiding center coordinate R

and the parallel velocity coordinate v‖ and the magnetic moment µ.

vgc(〈φ〉, 〈A〉) def
=

dR

dt
, agc(〈φ〉, 〈A〉) def

=
dv‖
dt

guiding center velocity/acceleration

with the gyro-averaged electrostatic and magnetic potentials 〈φ〉 and 〈A〉.
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The discretized f

The full-f PIC approximation is given by a sum of δ functions:

f(R, v‖, µ, t) =

N∑

p=1

wp

Jred
δ(R − Rp(t)) δ(v‖ − v‖p(t)) δ(µ − µp(t0))

with the Jacobian in the reduced phase space Jred = 2πB⋆
‖.

Each marker (macro particle, tracer, . . .) p is defined by:

• its position in the 5-dim phase space (Rp, v‖p, µp)

• its phase-space volume Ωp assigned by the initial marker distribution g(t0)

• its constant weight wp

• its averaged value of fp = wp/Ωp over the phase-space volume Ωp
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Discretization of parallel Ampère’s law

The Helmholtz type Ampère’s law
equation is discretized with a finite el-
ement method:

A‖(x, t) =
∑

ν

A‖ν(t)Λν(x)

where Λµ(x) is a product of unidimen-
sional B-splines S of order k:

Λµ(x) = Bk
l (r)Bk

m(χ)Bk
n(ϕ)

Roman Hatzky · HLST – core team



Max-Planck-Institut für Plasmaphysik, EURATOM Association

14th European Fusion Theory Conference, 26th – 29th Sep. 2011, Frascati

Tensor product of B-splines:

B-splines can be extended to higher dimensions, e.g. three dimensions:

Blmn(x)
def
= Bl(x) Bm(y) Bn(z)

Monograph: Carl de Boor, A practical guide to splines, Revised edition, Springer-Verlag 2001.

Advantages of finite elements (B-splines):

• Conservation laws, e.g. particle number and energy conservation for PIC are
consistently preserved

• Complicated geometries and non-equidistant meshes are easy to implement
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Discretization of Ampère’s law using Galerkin’s method

−∇⊥ ·
[
(1 − βi)∇⊥A‖

]
+

(
βi

ρ2
i

+
βe

ρ2
e

)

A‖ = µ0

(
〈j‖i〉 + j‖e

)

1. Insert the discretized form of A‖(x, t) =
∑

ν′ A‖ν′(t)Λν′(x)

2. Multiply the equation by a test function Λν(x)

3. Integrate the whole equation over the entire plasma volume

LHS:
∑

ν′

∫ [

(1 − βi)∇⊥Λν · ∇⊥Λν′ +

(
βi

ρ2
i

+
βe

ρ2
e

)

ΛνΛν′

]

dx A‖ν′(t)
def
=
∑

ν′
[Lνν′ + Sνν′] A‖ν′

Polarization density (Laplacian operator): integrated by parts (weak form)
⇒ Discretization consists of B-splines and B-spline first derivatives only
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Discretization of 〈j‖i〉 at RHS:

N∑

p=1

v‖ipwip
1

2π

∫ 2π

0

∫

Λν(x) δ(Rip + ρip −x) dx dα =
N∑

p=1

v‖ipwip
1

2π

∫ 2π

0

Λν(Rip + ρip) dα

using

1. The definition of the gyro-averaged ion current which smears out the density
along the gyro-ring of radius ρi:

〈j‖i〉 def
=

∫

v‖ifi δ(R + ρi − x) d6Z =

∫

v‖ifi δ(R + ρi − x) B⋆
‖ dR dv‖ dµ dα

2. The discretized fi:

fi =
N∑

p=1

1

2πB⋆
‖
wip(t) δ(R− Rip(t)) δ(v‖ − v‖ip(t)) δ(µ − µip(t0))
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The interpolation of the current onto the grid

The construction of the RHS is the so-called current assignment:

j‖iν(t)
def
=

N∑

p=1

v‖ipwip
1

2π

∫ 2π

0

Λν(Rip + ρip) dα

Projection of the weights wip in the form of gyro-rings onto the B-spline basis.

The charge assignment is a scatter operation,
e.g. each sample point contributes to 64 grid
points for cubic B-splines in 3-dim.

The figure shows linear interpolation for linear
B-splines in 2-dim.
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The interpolation of ∇〈A‖〉 from the grid

The gyro-averaged magnetic potential 〈A‖〉 is defined by:

〈A‖〉 def
=

1

2π

∫ 2π

0

∫

A‖(x) δ(R + ρi − x) dx dα =
1

2π

∫ 2π

0

A‖(R + ρi) dα

The gyro-averaged ∇〈A‖〉 is defined by:

∇〈A‖〉 def
= ∇R〈A‖〉 =

1

2π

∫ 2π

0

∇RA‖(x)

∣
∣
∣
∣
x=R+ρi

dα + O(ǫB)

Inserting the discretized form of A‖(x, t) =
∑

ν A‖ν(t)Λν(x) gives:

∇〈A‖〉 =
∑

ν

A‖ν
2π

∫ 2π

0

∇Λ(R + ρi) dα + O(ǫB)
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The gyro-averaged ∇〈A‖〉 is an analytic differential of the potential represented
by the B-splines, i.e., the gradient is computed exactly using:

∇Λν(s, ϑ, ϕ) =
∂Λν

∂s
∇s +

∂Λν

∂ϑ
∇ϑ +

∂Λν

∂ϕ
∇ϕ

The Nav field vectors ∇A‖n on the gyro-ring are calculated from the B-spline
representation of the potential and then averaged.

The ∇A‖n calculation is a gather operation,
e.g. each sample point is assembled from 64
grid points for cubic B-splines in 3-dim.

The figure shows linear interpolation for linear
B-splines in 2-dim.
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The cancellation problem
The electron distribution function fe includes an adiabatic (Boltzmann) part
responding to A‖:

δfe = δf ad
e + δfnonad

e where δf ad
e = −ev‖f0e

kBTe
A‖

The electron skin term in Ampère’s law coincides with the adiabatic current
term:

βe

ρ2
e

A‖ =
µ0n0e

2

me
A‖ = −µ0e

∫

d6Z δf ad
e v‖ δ(R− x) = µ0j

ad
‖e

⇓
In theory the skin terms cancel the adiabatic current terms.

−∇⊥ ·
[
(1 − βi)∇⊥A‖

]
= µ0

(

〈j‖i〉nonad + jnonad
‖e

)
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The PIC method expresses inseparably the adiabatic and nonadiabatic current.
⇓

Signal-to-noise problem when adiabatic current dominates.

jad
‖e

〈j‖i〉nonad + jnonad
‖e

≈ βe/ρ
2
eA‖

∇2
⊥A‖

∝ n0A‖
∇2

⊥A‖

Due to the signal-to-noise problem the numerical cancellation of the skin terms
is inaccurate which is called the “cancellation problem”.

The nonadiabatic part is the minor part of the total electron distribution for

• high beta cases, β & 1 %

• the MHD limit k⊥ → 0

The cancellation problem scales with n0 and 1/k2
⊥(s).
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1/k2
⊥ dependency of the cancellation problem for a cylindrical configuration

1

k2
⊥

=
r2
a

(
m

r/ra

)2

+ π2

where m is the poloidal mode num-
ber and the minimal kr is assumed.

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.25 0.5 0.75 1

m=0
m=1

m=2

m=3

m=5

m=10

r/ra

1/
(r

ak
⊥
)2

• The cancellation problem is most pronounced for the m = 0 mode
⇒ negative effect on the accuracy of the zonal flows

• For m 6= 0 the cancellation problem is most pronounced at the edge

• The cancellation problem scales with r2
a
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The cancellation problem in the quasineutrality equation

The contribution of the total adiabatic part to the electron number density ne

is: ∫

d6Z δ(R − x)
ef0e

kBTe
φ −

∫

d6Z δ(R − x)
ev‖ef0e

kBTe
A‖

︸ ︷︷ ︸
=0

The last term has to “cancel with a zero” and is a source of a potentially large
statistical error in each spatial bin Λν:

e

Nν
e∑

p=1

ΛνΩpe

v‖pef0e

kBTe
A‖

∣
∣
∣
∣
Rp,v‖p,µp

6= 0

⇒ The cancellation problem has its counterpart in the quasineutrality equation.
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The electron distribution function in velocity space at the MHD-limit

adiabatic and nonadiabatic part
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⇒ The nonadiabatic part can be drastically smaller than the adiabatic part.
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Control variates as variance reduction method

One tries to utilize (strong) correlation between the observed variable X and
some auxiliary variable Y , the so called control variable whose expected value
E [Y ] = ν has to be known analytically.

The task is to estimate the expected value E [X ] = µ with a preferably smaller
standard deviation than V [X ].

Hence, we define the variable Z which has the same expected value as E [X ] by

Z
def
= X − α(Y − ν) = Z̃ + αν where Z̃

def
= X − αY

The parameter α can be used to further optimize the variance reduction property
of the control variate. Here we omit this opportunity by setting α = 1.
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The expected value of Z is as predicted

E [Z] = E [Z̃] + ν = E [X ] − (E [Y ] − ν) = E [X ].

Only the variable Z̃ will be discretized by our control variate schemes as the
expected value ν is known analytically and can be added at any time.

The variance of Z is

V [Z] = V [Z̃] = V [X − Y ] = V [X ] − 2Cov[X, Y ] + V [Y ]

where the covariance is defined by

Cov[X, Y ]
def
= E [(X − µ)(Y − ν)].

We seek for the case V [Z] < V [X ] to reduce the statistical error.
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Effective control variates

The auxiliary variable Y is an effective control variate if the correlation is strong
enough, i.e.

Cov[X, Y ]

V [Y ]
>

1

2
⇒ V [Z̃] < V [X ].

For PIC simulations one can use the knowledge about the initial state f(t0) of
the system to construct an effective control variate as long as the system does
not evolve too far from its initial state.

For such situations the usage of a control variate is a valuable enhancement of
the full-f PIC method which has naturally problems to resolve relatively small
changes of the system.

The standard error ǫ (statistical noise) can be reduced in some cases drastically.
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Ordinary charge assignment with a control variate

b(t) =
1

N

N∑

p=1

wp Λ(Rp) ≃
1

N

N∑

p=1

Ωp [fp − f0(Rp(t),vp(t))]
︸ ︷︷ ︸

Z̃=X−Y

Λ(Rp) +

∫

f0 Λ dR dv
︸ ︷︷ ︸

E [Y ]=ν

=
1

N

N∑

p=1

[wp − Ωpf0,p(t)]
︸ ︷︷ ︸

w̃p(t)

Λ(Rp) + b̂ where b̂
def
=

∫

f0 Λ dR dv

• The B-spline coefficient vector b̂ is the result of the analytic projection of
the control variate f0 onto the B-spline basis.

• As long as the control variate is time independent the B-spline coefficient
vector b̂ has to be calculated only once at the initialization.
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The δf method

The popular δf method chooses the following ansatz:

δf = f − f0

For PIC simulations it is only used as an efficient noise reduction method if

δf ≪ f0

It can be interpreted as a control variate method which has set α = 1:

b =
1

N

N∑

p=1

Ωp[fp − fM,p] Λ(Rp) + b̂ =
1

N

N∑

p=1

Ωpδfp Λ(Rp) + b̂ =
1

N

N∑

p=1

w̃p(t) Λ(Rp) + b̂

It usually integrates an unnecessary evolution equation to derive δfp(t).
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The adjustable control variate

An effective control variate can be constructed under the assumption of the
presence of a dominant part responding adiabatically to the magnetic potential
in the perturbation of the distribution function of the electrons:

δfe ≈ δf ad
e = −ev‖f0e

kBTe
A‖

We define the stochastic variable Z̃ by introducing a “noise reduced” species
of electron marker weights:

w̄pe
def
= Ωpe(δfe − δf ad

e ) = w̃pe + Ωpe

ev‖f0e

kBTe
A‖

∣
∣
∣
∣
Rp,v‖p,µp

Problem: We don’t know A‖ in advance!
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Ampère’s law discretized in a B-spline finite element basis

(L + Si + Se) c = µ0〈j‖i〉 + µ0j‖e − Jad
‖e c

︸ ︷︷ ︸

Z̃=X−Y

+ Sec︸︷︷︸
E [Y ]=ν

Capital letters depict matrices, c is the B-spline coefficient vector to be solved
for and j‖’s are the coefficient vectors after current assignment of the weights.

⇓
The cancellation problem can be resolved analytically by eliminating the electron
skin term Sec on both sides:

(L + Si + Jad
‖e ) c = µ0(〈j‖i〉 + j‖e)

⇓
This “noise reduced” matrix equation can be solved for c to achieve A‖(x).
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The iterative scheme

c = (L + S)−1[I − M ]−1b = (L + S)−1

(

b +

∞∑

i=1

b(i)

)

where

S
def
= (Si + Se), M

def
= (Se − Jad

‖e )(L + S)−1, b
def
= µ0(〈j‖i〉 + j‖e), b(i) def

= M i b

We use the Neumann series with the sufficient convergence condition ‖M‖ < 1.

The solution vector c = limi→∞ c(i) can be calculated iteratively by:

c(0) = (L + S)−1 b, c(n+1) = (L + S)−1[b + (Se − Jad
‖e )c(n)]

• Usually just one or two iterations are sufficient

• A Cholesky decomposition is only necessary at the initialization
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Numerical results

Shear Alfvén wave in the MHD limit k⊥ → 0

Slab model:

kxρi = 0.023
kyρi = 0.015
kzρi = 7.43 × 10−4

β = 3.04 %
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Reduction of the number of markers by more than four orders of magnitude!
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Global linear tokamak simulation of a low n TAE with the GYGLES code
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conference!
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Global stellarator simulation with the EUTERPE code

• Equilibrium: Wendelstein 7-X

• Linear simulation of electromagnetic ITG with β = 1%

• Fully kinetic electrons ⇒ small time step

• Marker numbers: Ni = 32 · 106, Ne = 128 · 106

• Grid size (s, ϑ, ϕ) : 100 × 128 × 128

• Computing time: ≈ 100 000 CPU hours on 128 cores
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Global nonlinear simulation in a tokamak with the NEMORB code

A. Bottino et al., IEEE Transactions on Plasma Science, 38, p. 2129–2135 (2010)
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Summary

• The established δf scheme for PIC is a control variate method belonging to
a group of Monte Carlo methods used for variance reduction.

• An iterative implementation of an adaptive control variate can be used to
solve the “cancellation” problem very efficiently.

• There are no limitations concerning the geometry of the configuration.

• The method works for linear and nonlinear simulations.

• Fully kinetic electromagnetic PIC simulations become more and more the
standard.
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