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The Vlasov equation

The usual basis for kinetic treatments of a collisionless plasma is the Vlasov
equation:

AN

f, Of, g
o TV ok T BV B0

Here, f,(x,V,t) is the distribution function of the sth species in six-dimensional
phase space with the spatial coordinate x and the velocity coordinate v.

=0

The Vlasov equation can be written in the following form:

Dfs def afs dx afs dv af;_
Di o T ox T at v Y

where
dx B

d s : :
=V , d_‘tf — 737/_3 (E+v x B) equations of motion (1)
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Its short form DfS/Dt = 0 means that the total derivative vanishes along the
characteristics given by the integration of Egs. (1).

In physical terms:

If we follow the particles along their trajectories by integrating the equa-
tions of motion, Egs. (1), in six-dimensional phase space, the initial value of
Fs(x(to), v(ty)) will not change.

This method is well known by the name “method of characteristics” and can
be used to evolve f; in time (initial value problem).
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The Vlasov-Maxwell equations

The self-consistent electric and magnetic fields E and B which appear in the
force law are calculated from Poisson’s equation and Ampere’s law, two of the
Maxwell equations:

1 OE
c? Ot
Here, the charge density p and current density j are to be obtained at each
point in space from the appropriate moments of the distribution function itself:

o(x,t) = quffsdgv j(x,t) = qufvfsdgv

where the summation is over the species of particles present in the plasma.

eV -E=y V X B = poj +
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The PIC method

The Particle-In-Cell method (PIC) is a numerical technique used to solve a
certain class of partial differential equations:

e Individual (macro) particles in a Lagrangian frame are traced in continuous
phase space

e Moments of the distribution function are computed simultaneously on a
Eulerian (stationary) mesh to solve the self-consistent field equations

The PIC method is a so-called Particle-Mesh (PM) method which includes
interactions of particles only through the average fields.

Area of application in plasma physics:
laser-plasma interactions, electron acceleration and ion heating in the auroral
ionosphere, magnetic reconnection, ..., gyrokinetics
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Schematic diagram of the PIC method

Integration of the
equations of motion

=
Interpolation of the Interpolation of charge
fields from the mesh to and current source terms
the particle locations onto the potential mesh
=

Computation of the
potentials on the mesh
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Monte Carlo evaluation of integrals

Of special interest is the evaluation of moments of the distribution function f
over the phase space volume V/, i.e. general integrals of the form

mmglA@ﬂ@@

where A(z) is a general function of the phase-space coordinates z.
For example, /(A) would be the number density in configuration space if A = 1,
and the integral is evaluated over the velocity space.

The sampling distribution of our Monte-Carlo sampling points (marker) is done
by a continuous probability density function ¢(z) such that

Aﬂ@mz:1
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Now, the integral for /(A) can be written in the following form

D) [ Aagla)in where ) HELE

and £|)\| is the expected value of the random variable \. In addition, we define
the variance of )\ by

o = V[A(z) / A2) - EN@)) g(z) dz

The crude Monte-Carlo estimator for the integral /(A) is given by the sum over
the marker weights w,

N
1
=~ Z N(zp)w, + € where € =
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Liouville’s theorem

A phase space volume ¢, o ()(z,) moving in phase space according to the

equations of motion does not change its volume, although in general it can
change its shape (Liouville’s theorem):

/ dz = const.
Qp

As the marker distribution and phase space volumes (?, are related by

v
g, = — = const.
P
it follows for the marker weights from f, = const. that
W), = Jo = const.

9p

Roman Hatzky - HLST —core team



Max-Planck-Institut fiir Plasmaphysik, EURATOM Association

14" European Fusion Theory Conference, 26" — 29" Sep. 2011, Frascati

The gyrokinetic Vlasov equation (W.W. Lee, 1983)

The average of the Vlasov equation over the fast gyro-motion leaves just the
guiding center motion and thus reduces the dimensionality of the problem:

dofs dR Ofs dyp 0Of; du def V7
ot ' dt OR ' dt v o "7 3B
Here, f,(R,v|, 1, t) is the guiding center distribution function of the sth species in

the reduced five-dimensional phase space with the guiding center coordinate R
and the parallel velocity coordinate v; and the magnetic moment .

o dR. of d - : :
Vec((0), (A)) d:f I age((0), (A)) d:f % guiding center velocity/acceleration

with the gyro-averaged electrostatic and magnetic potentials (¢) and (A).
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The discretized f

The full-f PIC approximation is given by a sum of 6 functions:

FR, vy, 1) = Z }fjdé (R — R,(1)) 8(v) — v, (1)) 8 — (ko)

p=1
with the Jacobian in the reduced phase space J.q = 27TBH

Each marker (macro particle, tracer, ...) p is defined by:
e its position in the 5-dim phase space (R, v|,, 11,)
e its phase-space volume (), assigned by the initial marker distribution g(¢)
e its constant weight w,

e its averaged value of f, = w,/(2, over the phase-space volume (2,
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Discretization of parallel Ampere’s law

The Helmholtz type Ampere’'s law
equation is discretized with a finite el-
ement method:

AH X, t ZAHV >

where A ,(x) is a product of unidimen-
sional B-splines S of order k:

Nu(x) = B (r) By (x) B, ()

Cubic Spline Sj
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Tensor product of B-splines:

B-splines can be extended to higher dimensions, e.g. three dimensions:

def
Blmn <X>

= Bi(z) Bu(y) Bu(2)

Monograph: Carl de Boor, A practical guide to splines, Revised edition, Springer-Verlag 2001.

Advantages of finite elements (B-splines):

e Conservation laws, e.g. particle number and energy conservation for PIC are
consistently preserved

e Complicated geometries and non-equidistant meshes are easy to implement
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Discretization of Ampere’s law using Galerkin’s method

V- [(1=B)ViAy] + (f f) Ay =m0 (Gis) + Jie)

1. Insert the discretized form of A(x,t) =5, Aj/(t)\,(x)
2. Multiply the equation by a test function A, (x)

3. Integrate the whole equation over the entire plasma volume

LH
Z/ [ 1 — 61 VJ_A VA, + (ﬂl 56) AN, ] dx AHV’(t) def Z[LVV/ + Svu’] AHV’

101 pe /

v

Polarization density (Laplacian operator): integrated by parts (weak form)
= Discretization consists of B-splines and B-spline first derivatives only
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Discretization of (j|;) at RHS:
N

27 2
1
UHlpwlp o / / p + Pip — X> dxda = E V)|ipWip % /() AIJ<Rip + pip) da

p=1
usmg

1. The definition of the gyro-averaged ion current which smears out the density
along the gyro-ring of radius p;:

i) e / v fiS(R+ pi — x) d°Z = / vifi 6(R + pi — x) Bj dR dvj dp da

2. The discretized f;:
N

fi= Z 27:B*|w1p<t> O(R — Rip(t)) 0 (v — vyp(t)) 0 (1 — pip(to))
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The interpolation of the current onto the grid

The construction of the RHS is the so-called current assignment:
N

. def 1 on
]Hiy(t) = Z V|ipWip 2— /0 AV(Rip + pip) da

7'('
p=1

Projection of the weights w;, in the form of gyro-rings onto the B-spline basis.

The charge assighment is a scatter operation, l l l
e.g. each sample point contributes to 64 grid \

N N . . . L @ @
points for cubic B-splines in 3-dim. ®
The figure shows linear interpolation for linear ‘>{ I
B-splines in 2-dim. . |
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The interpolation of V(4) from the grid

The gyro-averaged magnetic potential (4)) is defined by:
def 1 27 1 2T
AH AH (R + p; — x)dxda = 5 AH(R + p;) da
0

The gyro-averaged V(A ) is defined by:

1 2

V(A E VR(4)) = = [ VrA(x)

™ Jo

da + @, <€B>
x=R+p;

Inserting the discretized form of AH(X t)=>, Ap(t)A,(x) gives:

AH Z HV V/\ R + p;) da + O(ep)
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The gyro-averaged V(A ) is an analytic differential of the potential represented
by the B-splines, i.e., the gradient is computed exactly using:

O\, 8/\ (9/\V
0s 819 890

VAV<87 197 @) —

The N,, field vectors VA, on the gyro-ring are calculated from the B-spline
representation of the potential and then averaged.

The VA, calculation is a gather operation, & /l
e.g. each sample point is assembled from 64
grid points for cubic B-splines in 3-dim.

4

The figure shows linear interpolation for linear

N
B-splines in 2-dim. /\'
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The cancellation problem

The electron distribution function f. includes an adiabatic (Boltzmann) part
responding to Aj:

Of, = 624 §fromad where ofad = —

The electron skin term in Ampere’s law coincides with the adiabatic current
term:

Be Lo e a &
?A” - Omz A= _NOB/dGZ 0 fe v 6(R —x) = NO]HS
4

In theory the skin terms cancel the adiabatic current terms.

_VJ_ . [<1 B 51>VJ_AH] = 1 (<J~Hi>n0nad _i_jﬁlé)nad)
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The PIC method expresses inseparably the adiabatic and nonadiabatic current.

4

Signal-to-noise problem when adiabatic current dominates.

-ad
e _ Be/ LA N noA|
(ppremad + jpomd— VIA V34,

Due to the signal-to-noise problem the numerical cancellation of the skin terms
is inaccurate which is called the “cancellation problem”.

The nonadiabatic part is the minor part of the total electron distribution for

e high beta cases, 7 =~ 1 %
e the MHD Ilimit £, — 0

The cancellation problem scales with ng and 1/k% (s).
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1/k%* dependency of the cancellation problem for a cylindrical configuration

1 r?

- a

T

r/Ta

where m is the poloidal mode num-
ber and the minimal £, is assumed.

e The cancellation problem is most pronounced for the m = 0 mode
= negative effect on the accuracy of the zonal flows

e For m = 0 the cancellation problem is most pronounced at the edge

e The cancellation problem scales with 1>
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The cancellation problem in the quasineutrality equation

The contribution of the total adiabatic part to the electron number density 7,

IS:
6 ef()e 6 evHef()e
/dZ5( kB e¢ /dZ5 X) T Tl AL'

=0

The last term has to “cancel with a zero” and is a source of a potentially large
statistical error in each spatial bin A :

NY
HpefOe
e A oA # 0
p=1 Bp.v)pstip

= The cancellation problem has its counterpart in the quasineutrality equation.
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The electron distribution function in velocity space at the MHD-Ilimit

adiabatic and nonadiabatic part nonadiabatic part

n
|pre|/v

(o2}
o
o

3

N
o
o

o

Pitch-angie/rag 0 4 0 Pitch-angleyyag 0 4 0

= The nonadiabatic part can be drastically smaller than the adiabatic part.
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Control variates as variance reduction method

One tries to utilize (strong) correlation between the observed variable X and
some auxiliary variable Y, the so called control variable whose expected value
ElY] = v has to be known analytically.

The task is to estimate the expected value £ X]| = ;1 with a preferably smaller
standard deviation than V[X].

Hence, we define the variable Z which has the same expected value as £[X]| by

ZYX—alY —v)=Z+av  where ZEX_—aY

The parameter o can be used to further optimize the variance reduction property
of the control variate. Here we omit this opportunity by setting a = 1.
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The expected value of 7 is as predicted

E7) = 7] + v = E[X] — (E]Y] — v) = E[X].

Only the variable Z will be discretized by our control variate schemes as the
expected value v is known analytically and can be added at any time.

The variance of 7 is

~

V[Z] = V|Z] = V[X — Y] = V[X] — 2Cov[X, Y] + V[Y]

where the covariance is defined by

Cov[X, Y] €[(X — u)(Y —v)].

We seek for the case V|Z] < V[X] to reduce the statistical error.
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Effective control variates

The auxiliary variable Y is an effective control variate if the correlation is strong
enough, i.e.

CO;;[[);’]Y] > % = V[Z] < V[X].

For PIC simulations one can use the knowledge about the initial state f(t;) of
the system to construct an effective control variate as long as the system does
not evolve too far from its initial state.

For such situations the usage of a control variate is a valuable enhancement of
the full-f PIC method which has naturally problems to resolve relatively small
changes of the system.

The standard error ¢ (statistical noise) can be reduced in some cases drastically.
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Ordinary charge assignment with a control variate

| | &
b(6) = 3 Do ARy) = 4 S0 [~ SRy vOAR,) + [ foddRay
= oy e

e The B-spline coefficient vector b is the result of the analytic projection of
the control variate f; onto the B-spline basis.

e As long as the control variate is time independent the B-spline coefficient
vector b has to be calculated only once at the initialization.
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The 0f method

The popular 6 f method chooses the following ansatz:
5f = f = fo
For PIC simulations it is only used as an efficient noise reduction method if

of < fo

It can be interpreted as a control variate method which has set o = 1:
1 & 1 Sl ;
b:NZQp[f A AR, +b= NZ Of AR, + b = NZ )+ b

p=1

It usually integrates an unnecessary evolution equation to derive J f,(?).
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The adjustable control variate

An effective control variate can be constructed under the assumption of the
presence of a dominant part responding adiabatically to the magnetic potential
in the perturbation of the distribution function of the electrons:

ev) foe
kT,

Ofe = 0fi¢ = — A

We define the stochastic variable Z by introducing a “noise reduced” species
of electron marker weights:

_ def a
Wpe = Qpe((sfe o f d) - wpe + Qpe

Problem: We don’t know AH in advance!
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Ampere’s law discretized in a B-spline finite element basis

o . . ad
(L + 5+ 5c) ¢ = po) + podje — Jji €+5[Se]c
Yi=v

J-X-Y
Capital letters depict matrices, c is the B-spline coefficient vector to be solved
for and j’s are the coefficient vectors after current assignment of the weights.

4

The cancellation problem can be resolved analytically by eliminating the electron
skin term S.c on both sides:

(L+ S+ Jjd) ¢ = po(Gp) +Jje)

4

This “noise reduced” matrix equation can be solved for c to achieve A (x).
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The iterative scheme

c=(L+S) ' I-—M""b=(L+5" <b+§))>
where

def def

def def _ . i
SE(Si+5), ME(Se—=JONL+S9)" b= po((p) +ije), b= M'Db
We use the Neumann series with the sufficient convergence condition ||/ || < 1.
The solution vector ¢ = lim, .. ¢!’ can be calculated iteratively by:

c” = (L+5)"b, " = (L+8) b+ (S — i)™

e Usually just one or two iterations are sufficient

e A Cholesky decomposition is only necessary at the initialization
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Numerical results

Shear Alfvén wave in the MHD limit &, — 0

-2
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6 =3.04 %
042 ~
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Reduction of the number of markers by more than four orders of magnitude!
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Global linear tokamak simulation of a low n TAE with the GYGLES code

full lines:

reduced MHD (CKA)
dashed lines with symbols: gyro-kinetic (GYGLES)
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Global stellarator simulation with the EUTERPE code

e Equilibrium: Wendelstein 7-X

e Linear simulation of electromagnetic ITG with 7= 1%
e Fully kinetic electrons = small time step

e Marker numbers: N, = 32 - 10° N, = 128 - 10°

e Grid size (s,7, ) : 100 x 128 x 128

e Computing time: ~ 100000 CPU hours on 128 cores
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Global nonlinear simulation in a tokamak with the NEMORB code

400¢ 400p
i =
N N
200 200|
% | 200 | 200 % | 200 | 200
R e R gl

A. Bottino et al., /EEE Transactions on Plasma Science, 38, p. 2129-2135 (2010)
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Summary

e The established 6 f scheme for PIC is a control variate method belonging to
a group of Monte Carlo methods used for variance reduction.

e An iterative implementation of an adaptive control variate can be used to
solve the “cancellation” problem very efficiently.

e There are no limitations concerning the geometry of the configuration.
e The method works for linear and nonlinear simulations.

e Fully kinetic electromagnetic PIC simulations become more and more the
standard.
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