
Model problem
Multigrid Method and DDM

Scaling properties
Conclusions

A parallel multigrid solver on a structured
triangulation of a hexagonal domain

DDXXI
June 29, 2012

Kab Seok Kang kskang@ipp.mpg.de

High Level Support Team (HLST)
Max-Planck-Institut für Plasmaphysik, EURATOM Association,

Boltzmannstraße 2, D-85748 Garching, Germany

K. S. Kang Parallel multigrid method



Model problem
Multigrid Method and DDM

Scaling properties
Conclusions

High Level Support Team (HLST)

– Main tasks: a support unit to ensure optimal exploitation of
HPC-FF and HELIOS computers,

– Support for code development:
- Parallelization & optimization of codes

for massively parallel computers,
- Improvement of the parallel scalability of existing codes
- Implementation of algorithms and mathematical library routines

to improve the efficiency of codes
- Visualization of large data sets

– Members: Core team (6 persons, IPP, Garching, Germany)
+ 4 staff (50%) in other European Fusion institutes.
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Model problem
Discretization
Parallelization

Model problem

– Purpose: solve the 2nd order PDE in Plasma Physics
simulation codes for Tokamak experiments

- Solution is sought at each time step→ less than 0.1 sec

Tokamak experiments ASDEX JET ITER DEMO
DoF 2M 8M 32M ?

– The second order PDE
(Helmholtz type) problem
on a hexagonal domain with
Dirichlet boundary condition

{
(A−∇ · B∇) u = f , in Ω

u = 0, on ∂Ω
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Model problem
Discretization
Parallelization

Discretization

– Linear Finite element method or Finite volume method
– Triangulation with regular triangles
– Boundary nodes: No degree of freedom. Ghost nodes.
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Model problem
Discretization
Parallelization

Parallelization

Sub-domains

– Divide a regular hexagonal domain

with regular triangular sub-domains

– Limited number of cores:

1, 6, 24, 96, 384, ...

– Determine where the boundary

nodes of the sub-domain

are included.

– Use Fortran 90 and MPI library
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Model problem
Discretization
Parallelization

Parallelization

Type I: 0,6,9,12,15,18,21,24, ...

Type II: 1, 2, 3, 4, 5, 8, 11, ... Type III: 7, 10, 13, 16, 19, 22, 25, ...

– Consisted by Real (•) and

Ghost (©) nodes.

– Classify three types

of sub-domains.

– Need five steps for data

communication for

matrix-vector multiplication.
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Multigrid Method
PETSc vs own code
Domain Decomposition Method
BDDC and FETI-DP

Multigrid Method

– Geometric multigrid method

– Well-known and well-analyzed fast solver

– The required number of iterations is fixed for many cases

– Lower levels: needs more data communication time
in comparison to computing time

– Use V-cycle scheme as a solver and as a preconditioner

– Gather all data on each core for a certain lower level and
solve by every core→ Use MPI_Allreduce
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Multigrid Method
PETSc vs own code
Domain Decomposition Method
BDDC and FETI-DP

Implementing Multigrid Method
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Multigrid Method
PETSc vs own code
Domain Decomposition Method
BDDC and FETI-DP

PETSc vs own code

– PETSc: Well-developed scientific library to solve
PDE based problems

- good for beginners of parallel programming
- large and slow (or need to be tuned)
- hard to optimize with structured discretization property

of some specific problems

– Own code: the code can be optimized according to the
properties of the structured discretization

- hard to implement→ only expert get the benefit.
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Multigrid Method
PETSc vs own code
Domain Decomposition Method
BDDC and FETI-DP

Domain Decomposition Method

– Divide into sub-domains and solve problems only on
each sub-domain→ naturally fit to distributed computers

– Overlapping (Schwarz) methods: minimally overlapping
method (Block Jacobi)→ slow

– Nonoverlapping methods: Enforce the conditions on
the boundaries of the sub-domains

- good for discontinuous or many part problems
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Multigrid Method
PETSc vs own code
Domain Decomposition Method
BDDC and FETI-DP

Two-level DDM

The condition number does not depend on the number of
sub-domains.

– Balanced domain decomposition with constraints (BDDC)
– FETI-DP

– Need to solve the coarse level problem
→ gather data on each core and solve on every core

– Solving local problem and coarse level problem on each core
→ Use Choleski factorization (LAPACK)

for small number of DoF per core problem
→ Need more scalable solver for large number of

DoF per core problem
→Working now on multigrid method
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Multigrid Method
PETSc vs own code
Domain Decomposition Method
BDDC and FETI-DP

BDDC: Preconditioner (Dohrmann (2003))
C: the constraints, enforced between subdomains, on corners and/or edges
P1 = RT

I A−1
II RI : Solve local Dirichlet BC problem

P2 = RT DΨK−1
c ΨT DR where Kc =

P
ΨT AΨ for

„
A CT

C 0

«„
Ψ
Λ

«
=

„
0

Rc

«
P3 = RT DQDR where

„
A CT

C 0

«„
Qg
µ

«
=

„
g
0

«
BDDC1. Initial static condensation correction and residual update

u0 = P1r , r1 = r − Au0,

BDDC2. Coarse grid and substructure corrections and residual update

u1 = P2r1, u2 = P3r1, r2 = r1 − A(u1 + u2)

BDDC3. Final static condensation correction u3 = P1r2.

BDDC4. Preconditioned residual Pr = u0 + u1 + u2 + u3.
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Multigrid Method
PETSc vs own code
Domain Decomposition Method
BDDC and FETI-DP

FETI-DP (Farhat et el (2001))
– Imposed the continuity on the inner boundary nodes (using Lagrange multipliers B)
and corners uc

Solve

0@Arr AT
cr BT

Acr Acc 0
B 0 0

1A0@ur
uc
λ

1A =

0@fr
fc
0

1A
Solve Fλ = d where

F = BA−1
rr BT + BA−1

rr AT
cr S

−1
cc Acr A−1

rr BT = BÃ−1BT

d = BA−1
rr fr + BA−1

rr AT
cr S

−1
cc (fc − Acr A−1

rr fr ) = BÃ−1 f̃

Scc = Acc − Acr A−1
rr AT

cr (Coarser level)

– Conjugate gradient method with Dirichlet preconditioner

uc = S−1
cc (fc − Acr A−1

rr fr + Acr A−1
rr BT λ) (global)

ur = A−1
rr (fr − AT

cr uc − BT λ) (local)
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Multigrid Method
PETSc vs own code
Domain Decomposition Method
BDDC and FETI-DP

BDDC and FETI-DP

Kc and Scc : Globally defined coarse level problem
→ Kc has large number of DoF than Scc ,
– Four times if corners and edges used for the constraints

– The required mumber of iterations of FETI-DP and BDDC
(≤ 10−8)
Ratio = h/H
h: finer level mesh size, H: lower level mesh size
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HELIOS
Highlights
Weak scaling

HELIOS

– IFERC: The International Fusion Energy Centre is located
at Rokkasho, Japan

- EU(F4E)–Japan Broader Approach collaboration

– The Computaional Simulation Centre (CSC): To exploit
large-scale and high performance fusion simulations

– HELIOS: 4410 Bullx B510 Blades, 70,000 cores
- 1.3 Pflops peak performance (No. 12 in Top500)
- Two Intel Sandy-Bridge EP 2.7 GHz per node
- Interconnection: Infiniband
- Duration of project: April 1, 2012 – Dec. 31, 2016
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HELIOS
Highlights
Weak scaling

Highlights

– Multigrid method with gathering data is faster

– The matrix-vector multiplication: almost perfect weak-scaling

– For large DoF of local problem: Multigrid method has
a very good (semi-)weak scaling property

– For small DoF per core problem, FETI-DP is the fastest

– Need scalable solver for FETI-DP and BDDC for large local
(AII or Arr ) and coarse (Kc or Scc) problems
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HELIOS
Highlights
Weak scaling

Multigrid with and without gathering

++: 2K DoF/core

—: 8K DoF/core

••: 32K DoF/core
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HELIOS
Highlights
Weak scaling

Multigrid as a solver for large problems

—: 8K DoF/core

••: 32K DoF/core

++: 128K DoF/core

◦◦: 512K DoF/core

��: 2M DoF/core

200M
PPPP

7

�
�
�
�
�

q
Red: 100× Matrix-vector

multiplication
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HELIOS
Highlights
Weak scaling

Multigrid, FETI-DP, and BDDC

Black: 125 DoF/core

Blue: 500 DoF/core

Red: 32 DoF/core

◦◦: Expectation
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HELIOS
Highlights
Weak scaling

FETI-DP and BDDC on fixed number of cores

Solution time One iteration

—: 24 cores
••: 96 cores

◦◦: 384 cores
��: 1536 cores

++: referencesBlack: FETI-DP
Red: BDDC
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Conclusions

– For large DoF per core problems: Multigrid method has
a very good (semi-)weak scaling property

– For small DoF per core problem: FETI-DP better than
Multigrid and BDDC, but needs improvement of the
scalability of the solver on the single core
for large problems

→ Hybrid solver: Multigrid method with FETI-DP as
a lowest solver, FETI-DP with multigrid method
as local and global problem solver
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Thanks

– Roman Hatzky (IPP, HLST Core team leader) and all core
team members
– Bruce Scott (IPP, Project coordinator)
– David Tskhakaya (University of Innsbruck, Project
coordinator)

Thank you for your attention!!
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