
Cache and Energy Efficiency of Sparse
Matrix-Vector Multiplication for different BLAS

Numerical Types with the RSB Format

Michele Martone

High Level Support Team
Max Planck Institute for Plasma Physics

Garching bei Muenchen, Germany

PARCO’13
Munich, Germany

September 13, 2013

1 / 34



Presentation outline

Intro
librsb: a Sparse BLAS implementation
A recursive layout

Experiments and results
Setup
Serial
Parallel

Outro
Conclusions
References
Extra Slides

2 / 34



Goal of this Study

I quantify and relate energy, cache usage and time savings of
librsb’s RSB over Intel’s MKL1 CSR for SParse
Matrix-Vector multiply (SpMV) for matrices of an example
application

I ... for different numerical types

1Math Kernel Library
3 / 34



Context: Sparse Matrix Computations

I numerical matrices which are large and populated mostly by
zeros

I ubiquitous in scientific/engineering computations (e.g.: PDE)

I the performance of sparse matrix codes computation on
modern CPUs can be problematic (a fraction of peak)!

4 / 34



Context: The four Basic Linear Algebra Subroutines
(BLAS) numerical types

For each, its occupation (sizeof()) S in bytes:

I D: double precision real
SD = 8

I Z : double precision complex
SZ = 16

I S : single precision real
SS = 4

I C : single precision complex
SC = 8

5 / 34



Matrix representations that matter to us

I coordinate (COO): used mostly in matrix specification

I compressed sparse rows (CSR): used often in computations

In most common implementations (e.g.: Intel’s MKL), 4 byte
integers are used for COO/CSR indices types.

6 / 34



Basic representation: Coordinate (COO)

A =

∣∣∣∣∣∣∣∣
a1,1 a1,2 a1,3 0

0 a2,2 a2,3 0
0 0 a3,3 0
0 0 0 a4,4

∣∣∣∣∣∣∣∣
I VA = [a1,1, a1,2, a1,3, a2,2, a2,3, a3,3, a4,4] (nonzeroes)

I IA = [1, 1, 1, 2, 2, 3, 4] (nonzeroes row indices)

I JA = [1, 2, 3, 2, 3, 3, 4] (nonzeroes column indices)

I so, ai ,j = VA(n) iff IA(n) = i , JA(n) = j

I occupation for type T: nnz · (ST + 4 + 4)

7 / 34



Standard representation: Compressed Sparse Rows (CSR)

A =

∣∣∣∣∣∣∣∣
a1,1 a1,2 a1,3 0

0 a2,2 a2,3 0
0 0 a3,3 0
0 0 0 a4,4

∣∣∣∣∣∣∣∣
I VA = [a1,1, a1,2, a1,3, a2,2, a2,3, a3,3, a4,4] (nonzeroes)

I JA = [1, 2, 3, 2, 3, 3, 4] (nonzeroes column indices)

I RP = [1, 4, 6, 7, 8] (row pointers, for each row)

I so, elements on line i are in positions
VA(RP(i)) to VA(RP(i + 1))− 1

I so, ai ,j = VA(n) iff JA(n) = j

I occupation for type T: nnz · (ST + 4) + 4 · nrows

8 / 34



Pros and Cons of CSR in a nutshell

I + common, easy to work with

I + parallel SpMV is feasible

I - parallel SpMV-T is feasible ...but poor performance

I - the above are relatively inefficient with large2 matrices

I - impractical for parallel sparse triangular solve

2Matrices that don’t fit in the cache memory.
9 / 34



A recursive matrix storage: Recursive Sparse Blocks (RSB)

we propose:

I a quad-tree of sparse leaf submatrices

I outcome of recursive partitioning in quadrants

I leaf submatrices are stored by either row oriented Compressed
Sparse Rows (CSR) or Coordinates (COO)

I an unified format for Sparse BLAS3 operations and
variations (e.g.: diagonal implicit, one or zero based indices,
transposition, complex types, stride, ...)

I partitioning with regards to both the underlying cache size
and available threads

I leaf submatrices are cache blocks

3Sparse Basic Linear Algebra Subprograms standard, as in
TOMS Algorithm 818 (Duff and Vömel, 2002).

10 / 34



Design goals of librsb and the RSB format

I parallel, efficient SpMV/triangular solve/COO → RSB

I in-place COO ↔ RSB conversions

I no oversized COO arrays / no fill-in (e.g.: in contrast to
BCSR)

I no need to pad x , y vectors arrays with extra elements
I developed on/for shared memory cache based CPUs:

I locality of memory references
I coarse-grained workload partitioning

I architecture independent (C’99, POSIX, OpenMP)

I librsb is available as free software on SourceForge

11 / 34



Adaptivity to Cache Size

Sample matrix from our application (a small one). Each block
should occupy approximately the same amount of memory.

On the left, blocking for S type; on the right, for Z .

12 / 34



Adaptivity to threads count

Figure: Matrix audikw 1 (symmetric, 943695 rows, 3.9 · 107 nonzeroes)
for 1, 4 and 16 threads on a Sandy Bridge.

13 / 34



Memory Occupation of CSR and RSB

I CSR’s is fixed:

nnz · (S + 4) + nrows · 4

I librsb RSB’s varies between:

nnz · (S + 2) + nrows · 4

and

nnz · (S + 8)

14 / 34



Occupation of RSB w.r.t CSR

For the different types:

∆ / type S D/C Z

min -25% -16% -10%
max +50% +33% +20%

(approximately)

15 / 34



Impact of Matrix Memory Occupation

I it can influence run-time (SpMV) accessed memory

I run-time accessed memory is what matters

I it’s better if the access pattern leads to less cache traffic

16 / 34



Experimental Setup (1)

I Matrices resulting from the description of global, resistive,
linear MHD (Magnetohydrodynamics) studied in toroidal
geometry (see Bondeson and Vlad, 1992).
We concentrate on the largest: 9.62 · 107 nonzeroes, 1.99 · 105

equations (with an average of 484 nonzeroes per row).4

I On a 2 x “Sandy Bridge E5-2670”; L3: 20MB, L2: 256KB,
L1:32KB

I We instrument the code with the LIKWID performance tool
(Treibig, Hager, Wellein’2011) to collect “ENERGY” and “L2
data volume” metrics

I We report:
I performance in canonical GFlops

(2 · 10−9 · nnz · elapsed seconds−1)
I spent energy in kJ/GFlop
I L2 traffic in bytes/nonzero

4Results are similar for smaller matrices, as long as outermost cache size is
exceeded.

17 / 34



Experimental Setup (2)

I Intel C Compiler

I CFLAGS=-O3 -fPIC -restrict -openmp

I mkl dcsrmv, mkl zcsrmv, mkl ccsrmv, mkl scsrmv from
“MKL 11.0-1, Product, 20121009 ...”

I no memory placement tool, no clock control

18 / 34



Serial Results: S

Implem. Speed %∆ to MKL Energy %∆ to MKL L2 Traffic %∆ to MKL
CSR/S/1 2.31 -7.95 28.08 +6.71 8.55 +2.65
MKL/S/1 2.51 0.00 26.31 0.00 8.33 0.00
RSB/S/1 2.33 -7.03 27.11 +3.01 6.19 -25.71

Table: Metrics: execution Speed in (canonical) GFlops
(2 · 10−9 · nnz · elapsed seconds−1; 3 times that for complex); Energy in
kJ/GFlop; L2 Traffic in bytes/nnz.

19 / 34



Serial Results: D

Implem. Speed %∆ to MKL Energy %∆ to MKL L2 Traffic %∆ to MKL
CSR/D/1 1.81 -5.25 36.40 +2.94 12.20 -0.10
MKL/D/1 1.91 0.00 35.36 0.00 12.21 0.00
RSB/D/1 1.84 -3.73 35.10 -0.74 10.20 -16.50

Table: Metrics: execution Speed in (canonical) GFlops
(2 · 10−9 · nnz · elapsed seconds−1; 3 times that for complex); Energy in
kJ/GFlop; L2 Traffic in bytes/nnz.

20 / 34



Serial Results: C

Implem. Speed %∆ to MKL Energy %∆ to MKL L2 Traffic %∆ to MKL
CSR/C/1 3.55 -50.54 17.66 +87.77 13.87 +0.70
MKL/C/1 7.19 0.00 9.40 0.00 13.78 0.00
RSB/C/1 3.53 -50.89 17.52 +86.32 11.44 -16.98

Table: Metrics: execution Speed in (canonical) GFlops
(2 · 10−9 · nnz · elapsed seconds−1; 3 times that for complex); Energy in
kJ/GFlop; L2 Traffic in bytes/nnz.

21 / 34



Serial Results: Z

Implem. Speed %∆ to MKL Energy %∆ to MKL L2 Traffic %∆ to MKL
CSR/Z/1 2.68 -30.29 23.83 +37.23 49.43 -4.19
MKL/Z/1 3.85 0.00 17.37 0.00 51.59 0.00
RSB/Z/1 2.69 -30.12 23.69 +36.39 34.41 -33.29

Table: Metrics: execution Speed in (canonical) GFlops
(2 · 10−9 · nnz · elapsed seconds−1; 3 times that for complex); Energy in
kJ/GFlop; L2 Traffic in bytes/nnz.

22 / 34



Parallel Results: S

Implem. Speed %∆ to MKL Energy %∆ to MKL L2 Traffic %∆ to MKL
MKL/S/12 10.13 0.00 25.47 0.00 8.26 0.00
MKL/S/16 8.26 0.00 35.39 0.00 8.25 0.00
RSB/S/12 14.48 +43.01 17.98 -29.43 6.18 -25.15
RSB/S/16 13.15 +59.07 24.34 -31.21 6.30 -23.66

Table: Metrics: execution Speed in (canonical) GFlops
(2 · 10−9 · nnz · elapsed seconds−1; 3 times that for complex); Energy in
kJ/GFlop; L2 Traffic in bytes/nnz.

23 / 34



Parallel Results: D

Implem. Speed %∆ to MKL Energy %∆ to MKL L2 Traffic %∆ to MKL
MKL/D/12 7.18 0.00 35.15 0.00 12.22 0.00
MKL/D/16 5.50 0.00 51.99 0.00 12.22 0.00
RSB/D/12 8.61 +19.95 29.58 -15.83 10.33 -15.43
RSB/D/16 8.50 +54.61 35.79 -31.16 10.35 -15.31

Table: Metrics: execution Speed in (canonical) GFlops
(2 · 10−9 · nnz · elapsed seconds−1; 3 times that for complex); Energy in
kJ/GFlop; L2 Traffic in bytes/nnz.

24 / 34



Parallel Results: C

Implem. Speed %∆ to MKL Energy %∆ to MKL L2 Traffic %∆ to MKL
MKL/C/12 28.79 0.00 9.03 0.00 13.80 0.00
MKL/C/16 21.62 0.00 13.52 0.00 13.81 0.00
RSB/C/12 32.27 +12.08 8.40 -6.92 10.43 -24.43
RSB/C/16 31.77 +46.93 9.94 -26.53 10.44 -24.44

Table: Metrics: execution Speed in (canonical) GFlops
(2 · 10−9 · nnz · elapsed seconds−1; 3 times that for complex); Energy in
kJ/GFlop; L2 Traffic in bytes/nnz.

25 / 34



Parallel Results: Z

Implem. Speed %∆ to MKL Energy %∆ to MKL L2 Traffic %∆ to MKL
MKL/Z/12 17.21 0.00 15.20 0.00 49.61 0.00
MKL/Z/16 13.09 0.00 22.45 0.00 49.62 0.00
RSB/Z/12 19.36 +12.50 13.59 -10.64 19.30 -61.08
RSB/Z/16 18.25 +39.44 17.07 -23.96 19.38 -60.94

Table: Metrics: execution Speed in (canonical) GFlops
(2 · 10−9 · nnz · elapsed seconds−1; 3 times that for complex); Energy in
kJ/GFlop; L2 Traffic in bytes/nnz.

26 / 34



Conclusions, serial runs

I serially, RSB is slower than MKL by respectively:

3.73% (D), 30.12% (Z ), 7.03% (S), 50.89% (C )

I with no bandwith limitations, MKL’s optimized serial kernels
are better!

27 / 34



Conclusions, parallel runs

I RSB results were better than MKL’s by respectively:

19.95% (D), 12.50% (Z ), 43.01% (S), 12.08% (C )

I the energy-cheapest Flops were associated to the fastest
executions, confirming e.g.: (Hager et al., 2012)

I 12-threaded performed better than 16-threaded!

I energy savings over MKL were roughly half the savings in
speed

28 / 34



Further Work

extend study to...

I auto-tuning : locating best core count and best subdivision

I other operations (symmetric multiply, transposed multiply,
conversion, ...)

I other matrices

I compilers impact on bandwidth limited RSB kernels

29 / 34



References

I Sparse BLAS: Iain S. Duff and Christof Vömel. Algorithm
818: A reference model implementation of the Sparse BLAS
in Fortran 95 In ACM Trans. on Math. Softw., n. 2, vol. 28,
pages 268–283, ACM, 2002

I librsb: http://sourceforge.net/projects/librsb

I RSB: Michele Martone, Salvatore Filippone, Salvatore Tucci,
Marcin Paprzycki, and Maria Ganzha. Utilizing recursive
storage in sparse matrix-vector multiplication - preliminary
considerations. In Thomas Philips, editor, CATA, pages
300-305. ISCA, 2010.

I Our sample application: A. Bondeson, G. Vlad, et al..
Resistive toroidal stability of internal kink modes in circular
and shaped tokamaks. In Physics of Fluids B: Plasma Physics,
4(7):1889–1900, 1992.

30 / 34

http://sourceforge.net/projects/librsb


Acknowledgements

I wish to thank my colleagues at HLST for providing me with
criticism with this presentation.

31 / 34



Questions / discussion welcome!

Thanks for your attention.

Please consider using librsb:
http://sourceforge.net/projects/librsb

32 / 34

http://sourceforge.net/projects/librsb


Extra: Minimal Memory Occupation of RSB

at most, RSB saves:
4 nnz+4 nrows−2 nnz−4 nrows

4 nnz+4 nrows+nnzS = 2 nnz
4 nnz+4 nrows+nnzS ≈

2 nnz
4 nnz+nnzS =

2
4+S
over CSR:
this is 1/4 forS = SS, 1/6 for SD/SC, 1/10 for SZ.

33 / 34



Extra: Maximal Memory Occupation of RSB

at most, RSB uses:
8 nnz−4 nnz−4 nrows
4 nnz+4 nrows+nnzS = 4 nnz−4 nrows

4 nnz+4 nrows+nnzS ≈
4 nnz

4 nnz+nnzS = 4
4+S

more than CSR:
this is 1/2 for SS, 1/3 for SD/SC, 1/5 for SZ.

34 / 34


	Intro
	librsb: a Sparse BLAS implementation
	A recursive layout

	Experiments and results
	Setup
	Serial
	Parallel

	Outro
	Conclusions
	References
	Extra Slides


