Cache and Energy Efficiency of Sparse Matrix-Vector Multiplication for different BLAS Numerical Types with the RSB Format

Michele Martone

High Level Support Team Max Planck Institute for Plasma Physics Garching bei Muenchen, Germany

> PARCO'13 Munich, Germany September 13, 2013

Presentation outline

Intro

librsb: a Sparse BLAS implementation A recursive layout

Experiments and results

Setup Serial Parallel

Outro

Conclusions References Extra Slides

Goal of this Study

- quantify and relate energy, cache usage and time savings of librsb's RSB over Intel's MKL¹ CSR for SParse Matrix-Vector multiply (*SpMV*) for matrices of an example application
- ... for different numerical types

Context: Sparse Matrix Computations

- numerical matrices which are *large* and populated mostly by zeros
- ubiquitous in scientific/engineering computations (e.g.: PDE)
- the performance of sparse matrix codes computation on modern CPUs can be problematic (a fraction of peak)!

Context: The four *Basic Linear Algebra Subroutines* (BLAS) numerical types

For each, its occupation (sizeof()) S in bytes:

- D: double precision real
 S_D = 8
- ► *Z*: double precision complex *S*_Z = 16
- S: single precision real
 S_S = 4
- C: single precision complex
 S_C = 8

Matrix representations that matter to us

- coordinate (COO): used mostly in matrix specification
- compressed sparse rows (CSR): used often in computations

In most common implementations (e.g.: Intel's MKL), 4 byte integers are used for COO/CSR indices types.

Basic representation: Coordinate (COO)

$$A = \begin{vmatrix} a_{1,1} & a_{1,2} & a_{1,3} & 0 \\ 0 & a_{2,2} & a_{2,3} & 0 \\ 0 & 0 & a_{3,3} & 0 \\ 0 & 0 & 0 & a_{4,4} \end{vmatrix}$$

・ロト ・四ト ・ヨト ・ヨト

7/34

- $\blacktriangleright VA = [a_{1,1}, a_{1,2}, a_{1,3}, a_{2,2}, a_{2,3}, a_{3,3}, a_{4,4}] (nonzeroes)$
- ▶ *IA* = [1,1,1,2,2,3,4] (nonzeroes row indices)
- ▶ JA = [1, 2, 3, 2, 3, 3, 4] (nonzeroes column indices)
- ▶ so, $a_{i,j} = VA(n)$ iff IA(n) = i, JA(n) = j
- occupation for type T: $nnz \cdot (S_T + 4 + 4)$

Standard representation: Compressed Sparse Rows (CSR)

$$A = \begin{vmatrix} a_{1,1} & a_{1,2} & a_{1,3} & 0 \\ 0 & a_{2,2} & a_{2,3} & 0 \\ 0 & 0 & a_{3,3} & 0 \\ 0 & 0 & 0 & a_{4,4} \end{vmatrix}$$

 $\lor VA = [a_{1,1}, a_{1,2}, a_{1,3}, a_{2,2}, a_{2,3}, a_{3,3}, a_{4,4}] \text{ (nonzeroes)}$

- ► JA = [1, 2, 3, 2, 3, 3, 4] (nonzeroes column indices)
- RP = [1, 4, 6, 7, 8] (row pointers, for each row)
- ▶ so, elements on line *i* are in positions VA(RP(*i*)) to VA(RP(*i*+1)) − 1

▶ so,
$$a_{i,j} = VA(n)$$
 iff $JA(n) = j$

• occupation for type T: $nnz \cdot (S_T + 4) + 4 \cdot nrows$

・ロト ・回ト ・ヨト ・ヨト

8/34

Pros and Cons of CSR in a nutshell

- + common, easy to work with
- + parallel SpMV is feasible
- ► parallel SpMV-T is feasible ...but poor performance
- the above are relatively inefficient with large² matrices
- impractical for parallel sparse triangular solve

A recursive matrix storage: *Recursive Sparse Blocks* (RSB)

we propose:

- a *quad-tree* of sparse *leaf* submatrices
- outcome of recursive partitioning in quadrants
- leaf submatrices are stored by either row oriented Compressed Sparse Rows (CSR) or Coordinates (COO)
- an unified format for Sparse BLAS³ operations and variations (e.g.: diagonal implicit, one or zero based indices, transposition, complex types, stride, ...)
- partitioning with regards to both the underlying cache size and available threads
- leaf submatrices are cache blocks

³Sparse Basic Linear Algebra Subprograms standard, as in TOMS Algorithm 818 (Duff and Vömel, 2002).

Design goals of librsb and the RSB format

- ▶ parallel, efficient SpMV/triangular solve/ $COO \rightarrow RSB$
- in-place $COO \leftrightarrow RSB$ conversions
- no oversized COO arrays / no fill-in (e.g.: in contrast to BCSR)
- no need to pad x, y vectors arrays with extra elements
- developed on/for shared memory cache based CPUs:
 - locality of memory references
 - coarse-grained workload partitioning
- architecture independent (C'99, POSIX, OpenMP)
- librsb is available as free software on SourceForge

Adaptivity to Cache Size

Sample matrix from our application (a *small* one). Each block should occupy approximately the same amount of memory.

On the left, blocking for S type; on the right, for Z.

Adaptivity to threads count

Figure: Matrix *audikw_1* (symmetric, 943695 rows, $3.9 \cdot 10^7$ nonzeroes) for 1, 4 and 16 threads on a Sandy Bridge.

Memory Occupation of CSR and RSB

CSR's is fixed:

$$nnz \cdot (S+4) + nrows \cdot 4$$

librsb RSB's varies between:

$$nnz \cdot (S+2) + nrows \cdot 4$$

and

$$nnz \cdot (S+8)$$

Occupation of RSB w.r.t CSR

For the different types:

Δ / type	S	D/C	Ζ
min	-25%	-16%	-10%
max	+50%	+33%	+20%

(approximately)

Impact of Matrix Memory Occupation

- ▶ it can influence run-time (SpMV) accessed memory
- run-time accessed memory is what matters
- it's better if the access pattern leads to less cache traffic

Experimental Setup (1)

- Matrices resulting from the description of global, resistive, linear MHD (Magnetohydrodynamics) studied in toroidal geometry (see Bondeson and Vlad, 1992).
 We concentrate on the largest: 9.62 · 10⁷ nonzeroes, 1.99 · 10⁵ equations (with an average of 484 nonzeroes per row).⁴
- On a 2 x "Sandy Bridge E5-2670"; L3: 20MB, L2: 256KB, L1:32KB
- We instrument the code with the LIKWID performance tool (Treibig, Hager, Wellein'2011) to collect "ENERGY" and "L2 data volume" metrics
- We report:
 - ▶ performance in canonical GFlops (2 · 10⁻⁹ · nnz · elapsed_seconds⁻¹)
 - spent energy in kJ/GFlop
 - L2 traffic in bytes/nonzero

⁴Results are similar for smaller matrices, as long as outermost cache size exceeded.

Experimental Setup (2)

- Intel C Compiler
- CFLAGS=-03 -fPIC -restrict -openmp
- mkl_dcsrmv, mkl_zcsrmv, mkl_ccsrmv, mkl_scsrmv from "MKL 11.0-1, Product, 20121009 ..."
- no memory placement tool, no clock control

Serial Results: S

Implem.	Speed	$\%\Delta$ to MKL	Energy	$\%\Delta$ to MKL	L2 Traffic	$\%\Delta$ to MKL
CSR/S/1	2.31	-7.95	28.08	+6.71	8.55	+2.65
MKL/S/1	2.51	0.00	26.31	0.00	8.33	0.00
RSB/S/1	2.33	-7.03	27.11	+3.01	6.19	-25.71

Serial Results: D

Implem.	Speed	$\%\Delta$ to MKL	Energy	$\%\Delta$ to MKL	L2 Traffic	%Δ to MKL
CSR/D/1	1.81	-5.25	36.40	+2.94	12.20	-0.10
MKL/D/1	1.91	0.00	35.36	0.00	12.21	0.00
RSB/D/1	1.84	-3.73	35.10	-0.74	10.20	-16.50

Serial Results: C

Implem.	Speed	$\%\Delta$ to MKL	Energy	$\%\Delta$ to MKL	L2 Traffic	$\%\Delta$ to MKL
CSR/C/1	3.55	-50.54	17.66	+87.77	13.87	+0.70
MKL/C/1	7.19	0.00	9.40	0.00	13.78	0.00
RSB/C/1	3.53	-50.89	17.52	+86.32	11.44	-16.98

Serial Results: Z

Implem.	Speed	$\%\Delta$ to MKL	Energy	$\%\Delta$ to MKL	L2 Traffic	$\%\Delta$ to MKL
CSR/Z/1	2.68	-30.29	23.83	+37.23	49.43	-4.19
MKL/Z/1	3.85	0.00	17.37	0.00	51.59	0.00
RSB/Z/1	2.69	-30.12	23.69	+36.39	34.41	-33.29

Parallel Results: S

Implem.	Speed	$\%\Delta$ to MKL	Energy	$\%\Delta$ to MKL	L2 Traffic	$\%\Delta$ to MKL
MKL/S/12	10.13	0.00	25.47	0.00	8.26	0.00
MKL/S/16	8.26	0.00	35.39	0.00	8.25	0.00
RSB/S/12	14.48	+43.01	17.98	-29.43	6.18	-25.15
RSB/S/16	13.15	+59.07	24.34	-31.21	6.30	-23.66

Parallel Results: D

Implem.	Speed	$\%\Delta$ to MKL	Energy	$\%\Delta$ to MKL	L2 Traffic	$\%\Delta$ to MKL
MKL/D/12	7.18	0.00	35.15	0.00	12.22	0.00
MKL/D/16	5.50	0.00	51.99	0.00	12.22	0.00
RSB/D/12	8.61	+19.95	29.58	-15.83	10.33	-15.43
RSB/D/16	8.50	+54.61	35.79	-31.16	10.35	-15.31

Parallel Results: C

Implem.	Speed	$\%\Delta$ to MKL	Energy	$\%\Delta$ to MKL	L2 Traffic	$\%\Delta$ to MKL
MKL/C/12	28.79	0.00	9.03	0.00	13.80	0.00
MKL/C/16	21.62	0.00	13.52	0.00	13.81	0.00
RSB/C/12	32.27	+12.08	8.40	-6.92	10.43	-24.43
RSB/C/16	31.77	+46.93	9.94	-26.53	10.44	-24.44

Parallel Results: Z

Implem.	Speed	$\%\Delta$ to MKL	Energy	$\%\Delta$ to MKL	L2 Traffic	$\%\Delta$ to MKL
MKL/Z/12	17.21	0.00	15.20	0.00	49.61	0.00
MKL/Z/16	13.09	0.00	22.45	0.00	49.62	0.00
RSB/Z/12	19.36	+12.50	13.59	-10.64	19.30	-61.08
RSB/Z/16	18.25	+39.44	17.07	-23.96	19.38	-60.94

Conclusions, serial runs

- serially, RSB is slower than MKL by respectively:
 3.73% (D), 30.12% (Z), 7.03% (S), 50.89% (C)
- with no bandwith limitations, MKL's optimized serial kernels are better!

Conclusions, parallel runs

- RSB results were better than MKL's by respectively: 19.95% (D), 12.50% (Z), 43.01% (S), 12.08% (C)
- ► the energy-cheapest Flops were associated to the fastest executions, confirming e.g.: (Hager et al., 2012)
- 12-threaded performed better than 16-threaded!
- energy savings over MKL were roughly half the savings in speed

extend study to ...

- auto-tuning: locating best core count and best subdivision
- other operations (symmetric multiply, transposed multiply, conversion, ...)
- other matrices
- compilers impact on bandwidth limited RSB kernels

References

- Sparse BLAS: Iain S. Duff and Christof Vömel. Algorithm 818: A reference model implementation of the Sparse BLAS in Fortran 95 In ACM Trans. on Math. Softw., n. 2, vol. 28, pages 268–283, ACM, 2002
- b librsb: http://sourceforge.net/projects/librsb
- RSB: Michele Martone, Salvatore Filippone, Salvatore Tucci, Marcin Paprzycki, and Maria Ganzha. Utilizing recursive storage in sparse matrix-vector multiplication - preliminary considerations. In Thomas Philips, editor, CATA, pages 300-305. ISCA, 2010.
- Our sample application: A. Bondeson, G. Vlad, et al.. Resistive toroidal stability of internal kink modes in circular and shaped tokamaks. In Physics of Fluids B: Plasma Physics, 4(7):1889–1900, 1992.

Acknowledgements

I wish to thank my colleagues at HLST for providing me with criticism with this presentation.

Questions / discussion welcome!

Thanks for your attention.

Please consider using librsb: http://sourceforge.net/projects/librsb

Extra: Minimal Memory Occupation of RSB

at most, RSB saves:

$$\frac{4 \text{ } nnz+4 \text{ } nrows-2 \text{ } nnz-4 \text{ } nrows}{4 \text{ } nnz+4 \text{ } nrows+nnzS} = \frac{2 \text{ } nnz}{4 \text{ } nnz+4 \text{ } nrows+nnzS} \approx \frac{2 \text{ } nnz}{4 \text{ } nnz+nnzS} = \frac{2 \text{ } nnz}{4 \text{ } nnz+4 \text{ } nrows+nnzS} \approx \frac{2 \text{ } nnz}{4 \text{ } nnz+nnzS} = \frac{2 \text{ } nnz}{4 \text{ } nnz+4 \text{ } nrows+nnzS} \approx \frac{2 \text{ } nnz}{4 \text{ } nnz+nnzS} = \frac{2 \text{ } nnz}{4 \text{ } nnz+4 \text{ } nrows+nnzS} \approx \frac{2 \text{ } nnz}{4 \text{ } nnz+nnzS} = \frac{2 \text{ } nnz}{4 \text{ } nnz+4 \text{ } nrows+nnzS} \approx \frac{2 \text{ } nnz}{4 \text{ } nnz+nnzS} = \frac{2 \text{ } nnz}{4 \text{ } nnz+4 \text{ } nrows+nnzS} \approx \frac{2 \text{ } nnz}{4 \text{ } nnz+nnzS} = \frac{2 \text{ } nnz}{4 \text{ } nnz+4 \text{ } nrows+nnzS} \approx \frac{2 \text{ } nnz}{4 \text{ } nnz+nnzS} = \frac{2 \text{ } nnz}{4 \text{ } nnz+4 \text{ } nrows+nnzS} \approx \frac{2 \text{ } nnz}{4 \text{ } nnz+nnzS} = \frac{2 \text{ } nnz}{4 \text{ } nnz+4 \text{ } nrows+nnzS} \approx \frac{2 \text{ } nnz}{4 \text{ } nnz+nnzS} = \frac{2 \text{ } nnz}{4 \text{ } nnz+4 \text{ } nrows+nnzS} \approx \frac{2 \text{ } nnz}{4 \text{ } nnz+nnzS} = \frac{2 \text{ } nnz}{4 \text{ } nnz+4 \text{ } nrows+nnzS} \approx \frac{2 \text{ } nnz}{4 \text{ } nnz+nnzS} = \frac{2 \text{ } nnz}{4 \text{ } nnz+4 \text{ } nrows+nnzS} \approx \frac{2 \text{ } nnz}{4 \text{ } nnz+nnzS} = \frac{2 \text{ } nnz}{4 \text{ } nnz+4 \text{ } nrows+nnzS} \approx \frac{2 \text{ } nnz}{4 \text{ } nnz+nnzS} \approx \frac{2 \text{ } nnz}{4 \text{ } nnz+nnzS} = \frac{2 \text{ } nnz}{4 \text{ } nnz+4 \text{ } nrows+nnzS} \approx \frac{2 \text{ } nnz}{4 \text{ } nnz+nnzS} \approx \frac{2 \text{ } nnz}{4 \text{ } nnz} \approx \frac{2$$

Extra: Maximal Memory Occupation of RSB

at most, RSB uses: $\frac{8 \text{ } nnz-4 \text{ } nnz-4 \text{ } nrows}{4 \text{ } nnz+4 \text{ } nrows+nnzS} = \frac{4 \text{ } nnz-4 \text{ } nrows}{4 \text{ } nnz+4 \text{ } nrows+nnzS} \approx \frac{4 \text{ } nnz}{4 \text{ } nnz+nnzS} = \frac{4}{4+5}$ more than CSR: this is 1/2 for S_S, 1/3 for S_D/S_C, 1/5 for S_Z.

