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Goal of this Study

I quantify and relate energy, cache usage and time savings of
librsb’s RSB over Intel’s MKL1 CSR for SParse
Matrix-Vector multiply (SpMV) for matrices of an example
application

I ... for different numerical types

1Math Kernel Library
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Context: Sparse Matrix Computations

I numerical matrices which are large and populated mostly by
zeros

I ubiquitous in scientific/engineering computations (e.g.: PDE)

I the performance of sparse matrix codes computation on
modern CPUs can be problematic (a fraction of peak)!
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Context: The four Basic Linear Algebra Subroutines
(BLAS) numerical types

For each, its occupation (sizeof()) S in bytes:

I D: double precision real
SD = 8

I Z : double precision complex
SZ = 16

I S : single precision real
SS = 4

I C : single precision complex
SC = 8
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Matrix representations that matter to us

I coordinate (COO): used mostly in matrix specification

I compressed sparse rows (CSR): used often in computations

In most common implementations (e.g.: Intel’s MKL), 4 byte
integers are used for COO/CSR indices types.
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Basic representation: Coordinate (COO)

A =

∣∣∣∣∣∣∣∣
a1,1 a1,2 a1,3 0

0 a2,2 a2,3 0
0 0 a3,3 0
0 0 0 a4,4

∣∣∣∣∣∣∣∣
I VA = [a1,1, a1,2, a1,3, a2,2, a2,3, a3,3, a4,4] (nonzeroes)

I IA = [1, 1, 1, 2, 2, 3, 4] (nonzeroes row indices)

I JA = [1, 2, 3, 2, 3, 3, 4] (nonzeroes column indices)

I so, ai ,j = VA(n) iff IA(n) = i , JA(n) = j

I occupation for type T: nnz · (ST + 4 + 4)
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Standard representation: Compressed Sparse Rows (CSR)

A =

∣∣∣∣∣∣∣∣
a1,1 a1,2 a1,3 0

0 a2,2 a2,3 0
0 0 a3,3 0
0 0 0 a4,4

∣∣∣∣∣∣∣∣
I VA = [a1,1, a1,2, a1,3, a2,2, a2,3, a3,3, a4,4] (nonzeroes)

I JA = [1, 2, 3, 2, 3, 3, 4] (nonzeroes column indices)

I RP = [1, 4, 6, 7, 8] (row pointers, for each row)

I so, elements on line i are in positions
VA(RP(i)) to VA(RP(i + 1))− 1

I so, ai ,j = VA(n) iff JA(n) = j

I occupation for type T: nnz · (ST + 4) + 4 · nrows
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Pros and Cons of CSR in a nutshell

I + common, easy to work with

I + parallel SpMV is feasible

I - parallel SpMV-T is feasible ...but poor performance

I - the above are relatively inefficient with large2 matrices

I - impractical for parallel sparse triangular solve

2Matrices that don’t fit in the cache memory.
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A recursive matrix storage: Recursive Sparse Blocks (RSB)

we propose:

I a quad-tree of sparse leaf submatrices

I outcome of recursive partitioning in quadrants

I leaf submatrices are stored by either row oriented Compressed
Sparse Rows (CSR) or Coordinates (COO)

I an unified format for Sparse BLAS3 operations and
variations (e.g.: diagonal implicit, one or zero based indices,
transposition, complex types, stride, ...)

I partitioning with regards to both the underlying cache size
and available threads

I leaf submatrices are cache blocks

3Sparse Basic Linear Algebra Subprograms standard, as in
TOMS Algorithm 818 (Duff and Vömel, 2002).
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Design goals of librsb and the RSB format

I parallel, efficient SpMV/triangular solve/COO → RSB

I in-place COO ↔ RSB conversions

I no oversized COO arrays / no fill-in (e.g.: in contrast to
BCSR)

I no need to pad x , y vectors arrays with extra elements
I developed on/for shared memory cache based CPUs:

I locality of memory references
I coarse-grained workload partitioning

I architecture independent (C’99, POSIX, OpenMP)

I librsb is available as free software on SourceForge
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Adaptivity to Cache Size

Sample matrix from our application (a small one). Each block
should occupy approximately the same amount of memory.

On the left, blocking for S type; on the right, for Z .
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Adaptivity to threads count

Figure: Matrix audikw 1 (symmetric, 943695 rows, 3.9 · 107 nonzeroes)
for 1, 4 and 16 threads on a Sandy Bridge.
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Memory Occupation of CSR and RSB

I CSR’s is fixed:

nnz · (S + 4) + nrows · 4

I librsb RSB’s varies between:

nnz · (S + 2) + nrows · 4

and

nnz · (S + 8)
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Occupation of RSB w.r.t CSR

For the different types:

∆ / type S D/C Z

min -25% -16% -10%
max +50% +33% +20%

(approximately)
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Impact of Matrix Memory Occupation

I it can influence run-time (SpMV) accessed memory

I run-time accessed memory is what matters

I it’s better if the access pattern leads to less cache traffic
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Experimental Setup (1)

I Matrices resulting from the description of global, resistive,
linear MHD (Magnetohydrodynamics) studied in toroidal
geometry (see Bondeson and Vlad, 1992).
We concentrate on the largest: 9.62 · 107 nonzeroes, 1.99 · 105

equations (with an average of 484 nonzeroes per row).4

I On a 2 x “Sandy Bridge E5-2670”; L3: 20MB, L2: 256KB,
L1:32KB

I We instrument the code with the LIKWID performance tool
(Treibig, Hager, Wellein’2011) to collect “ENERGY” and “L2
data volume” metrics

I We report:
I performance in canonical GFlops

(2 · 10−9 · nnz · elapsed seconds−1)
I spent energy in kJ/GFlop
I L2 traffic in bytes/nonzero

4Results are similar for smaller matrices, as long as outermost cache size is
exceeded.
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Experimental Setup (2)

I Intel C Compiler

I CFLAGS=-O3 -fPIC -restrict -openmp

I mkl dcsrmv, mkl zcsrmv, mkl ccsrmv, mkl scsrmv from
“MKL 11.0-1, Product, 20121009 ...”

I no memory placement tool, no clock control
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Serial Results: S

Implem. Speed %∆ to MKL Energy %∆ to MKL L2 Traffic %∆ to MKL
CSR/S/1 2.31 -7.95 28.08 +6.71 8.55 +2.65
MKL/S/1 2.51 0.00 26.31 0.00 8.33 0.00
RSB/S/1 2.33 -7.03 27.11 +3.01 6.19 -25.71

Table: Metrics: execution Speed in (canonical) GFlops
(2 · 10−9 · nnz · elapsed seconds−1; 3 times that for complex); Energy in
kJ/GFlop; L2 Traffic in bytes/nnz.
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Serial Results: D

Implem. Speed %∆ to MKL Energy %∆ to MKL L2 Traffic %∆ to MKL
CSR/D/1 1.81 -5.25 36.40 +2.94 12.20 -0.10
MKL/D/1 1.91 0.00 35.36 0.00 12.21 0.00
RSB/D/1 1.84 -3.73 35.10 -0.74 10.20 -16.50

Table: Metrics: execution Speed in (canonical) GFlops
(2 · 10−9 · nnz · elapsed seconds−1; 3 times that for complex); Energy in
kJ/GFlop; L2 Traffic in bytes/nnz.
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Serial Results: C

Implem. Speed %∆ to MKL Energy %∆ to MKL L2 Traffic %∆ to MKL
CSR/C/1 3.55 -50.54 17.66 +87.77 13.87 +0.70
MKL/C/1 7.19 0.00 9.40 0.00 13.78 0.00
RSB/C/1 3.53 -50.89 17.52 +86.32 11.44 -16.98

Table: Metrics: execution Speed in (canonical) GFlops
(2 · 10−9 · nnz · elapsed seconds−1; 3 times that for complex); Energy in
kJ/GFlop; L2 Traffic in bytes/nnz.
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Serial Results: Z

Implem. Speed %∆ to MKL Energy %∆ to MKL L2 Traffic %∆ to MKL
CSR/Z/1 2.68 -30.29 23.83 +37.23 49.43 -4.19
MKL/Z/1 3.85 0.00 17.37 0.00 51.59 0.00
RSB/Z/1 2.69 -30.12 23.69 +36.39 34.41 -33.29

Table: Metrics: execution Speed in (canonical) GFlops
(2 · 10−9 · nnz · elapsed seconds−1; 3 times that for complex); Energy in
kJ/GFlop; L2 Traffic in bytes/nnz.
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Parallel Results: S

Implem. Speed %∆ to MKL Energy %∆ to MKL L2 Traffic %∆ to MKL
MKL/S/12 10.13 0.00 25.47 0.00 8.26 0.00
MKL/S/16 8.26 0.00 35.39 0.00 8.25 0.00
RSB/S/12 14.48 +43.01 17.98 -29.43 6.18 -25.15
RSB/S/16 13.15 +59.07 24.34 -31.21 6.30 -23.66

Table: Metrics: execution Speed in (canonical) GFlops
(2 · 10−9 · nnz · elapsed seconds−1; 3 times that for complex); Energy in
kJ/GFlop; L2 Traffic in bytes/nnz.
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Parallel Results: D

Implem. Speed %∆ to MKL Energy %∆ to MKL L2 Traffic %∆ to MKL
MKL/D/12 7.18 0.00 35.15 0.00 12.22 0.00
MKL/D/16 5.50 0.00 51.99 0.00 12.22 0.00
RSB/D/12 8.61 +19.95 29.58 -15.83 10.33 -15.43
RSB/D/16 8.50 +54.61 35.79 -31.16 10.35 -15.31

Table: Metrics: execution Speed in (canonical) GFlops
(2 · 10−9 · nnz · elapsed seconds−1; 3 times that for complex); Energy in
kJ/GFlop; L2 Traffic in bytes/nnz.
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Parallel Results: C

Implem. Speed %∆ to MKL Energy %∆ to MKL L2 Traffic %∆ to MKL
MKL/C/12 28.79 0.00 9.03 0.00 13.80 0.00
MKL/C/16 21.62 0.00 13.52 0.00 13.81 0.00
RSB/C/12 32.27 +12.08 8.40 -6.92 10.43 -24.43
RSB/C/16 31.77 +46.93 9.94 -26.53 10.44 -24.44

Table: Metrics: execution Speed in (canonical) GFlops
(2 · 10−9 · nnz · elapsed seconds−1; 3 times that for complex); Energy in
kJ/GFlop; L2 Traffic in bytes/nnz.
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Parallel Results: Z

Implem. Speed %∆ to MKL Energy %∆ to MKL L2 Traffic %∆ to MKL
MKL/Z/12 17.21 0.00 15.20 0.00 49.61 0.00
MKL/Z/16 13.09 0.00 22.45 0.00 49.62 0.00
RSB/Z/12 19.36 +12.50 13.59 -10.64 19.30 -61.08
RSB/Z/16 18.25 +39.44 17.07 -23.96 19.38 -60.94

Table: Metrics: execution Speed in (canonical) GFlops
(2 · 10−9 · nnz · elapsed seconds−1; 3 times that for complex); Energy in
kJ/GFlop; L2 Traffic in bytes/nnz.
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Conclusions, serial runs

I serially, RSB is slower than MKL by respectively:

3.73% (D), 30.12% (Z ), 7.03% (S), 50.89% (C )

I with no bandwith limitations, MKL’s optimized serial kernels
are better!
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Conclusions, parallel runs

I RSB results were better than MKL’s by respectively:

19.95% (D), 12.50% (Z ), 43.01% (S), 12.08% (C )

I the energy-cheapest Flops were associated to the fastest
executions, confirming e.g.: (Hager et al., 2012)

I 12-threaded performed better than 16-threaded!

I energy savings over MKL were roughly half the savings in
speed
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Further Work

extend study to...

I auto-tuning : locating best core count and best subdivision

I other operations (symmetric multiply, transposed multiply,
conversion, ...)

I other matrices

I compilers impact on bandwidth limited RSB kernels
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Questions / discussion welcome!

Thanks for your attention.

Please consider using librsb:
http://sourceforge.net/projects/librsb
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Extra: Minimal Memory Occupation of RSB

at most, RSB saves:
4 nnz+4 nrows−2 nnz−4 nrows

4 nnz+4 nrows+nnzS = 2 nnz
4 nnz+4 nrows+nnzS ≈

2 nnz
4 nnz+nnzS =

2
4+S
over CSR:
this is 1/4 forS = SS, 1/6 for SD/SC, 1/10 for SZ.
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Extra: Maximal Memory Occupation of RSB

at most, RSB uses:
8 nnz−4 nnz−4 nrows
4 nnz+4 nrows+nnzS = 4 nnz−4 nrows

4 nnz+4 nrows+nnzS ≈
4 nnz

4 nnz+nnzS = 4
4+S

more than CSR:
this is 1/2 for SS, 1/3 for SD/SC, 1/5 for SZ.
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