
The multigrid method for an elliptic problem on a

rectangular domain with an internal conducting

structure and an inner empty space

K. S. Kang
High Level Support Team (HLST)

Max-Planck-Institut für Plasmaphysik
Boltzmannstraße 2

D-85748 Garching bei München
Germany

kskang@ipp.mpg.de

September 14, 2011

Abstract

This article is a technical report on the HLST project “2D Kinetic
model of the Scrape-Off Layer” (KinSOL2D). The multigrid method
is a well-known, fast and efficient algorithm to solve many classes of
problems, but its implementation is quite complex. So this report
gives a basic guideline for the implementation of the multigrid algo-
rithm as a solver and as a preconditioner for the Krylov subspace iter-
ative method. We report the implementation of the multigrid method
for an elliptic problem on a rectangular domain with an internal con-
ducting structure and an inner empty space. Issues which arose from
performance tests on the HPC-FF computer located at the Jülich Su-
percomputing Center (JSC) are addressed.

1



Contents

1 Introduction 3

2 Assessment of potential solvers 4

3 The multigrid method as a solver and preconditioner 6
3.1 Basics of the multigrid method . . . . . . . . . . . . . . . . . 6
3.2 Discretization scheme . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Intergrid transfer operators . . . . . . . . . . . . . . . . . . . 13
3.4 Smoothing operators . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 The Krylov subspace method and preconditioners . . . . . . . 18

4 The model problem and its discretization 23
4.1 The finite difference method . . . . . . . . . . . . . . . . . . . 24
4.2 The intergrid transfer operators . . . . . . . . . . . . . . . . . 28

5 The parallelization concept 32

6 Numerical Experiments 35
6.1 Validation of the discretization . . . . . . . . . . . . . . . . . 35
6.2 The local Gauss-Seidel iterative method . . . . . . . . . . . . 36
6.3 The handling of the Neumann boundary condition of the in-

ner empty space . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.4 The effect of the internal conducting structure . . . . . . . . 43
6.5 The effect of the size of the inner empty space and the inner

conducting structure . . . . . . . . . . . . . . . . . . . . . . . 51

7 The scaling property on HPC-FF 54
7.1 Algorithmic scaling . . . . . . . . . . . . . . . . . . . . . . . . 54
7.2 Strong scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.3 Semi-weak scaling . . . . . . . . . . . . . . . . . . . . . . . . 61

8 Conclusions 65

2



1 Introduction

The Particle-in-Cell (PIC) code BIT1 [24] is restricted so far to 1D3V (1-
dim real space + 3-dim velocity space) plasma and 2D3V neutral particle
modeling with a reasonable scaling up to 1000 and more cores. Ongoing
work is focused on enhancement of the code in real space to 2D3V plasma
simulations of the Scrape-Off-Layer (SOL). The increase of the dimension-
ality of the code to 2D or even 3D seems to be straight forward. However,
the Poisson solver in 2D has been identified as a bottleneck for the scaling
properties. It is mandatory that this part of the code also scales to very
high core numbers to maintain the good scaling property of the whole code.
So the work plan is to develop a good scaling Poisson solver in 2D.

3



2 Assessment of potential solvers

Possible candidates for solvers are a multigrid solver or, depending on the
type of the matrix, a preconditioned Conjugated Gradient Method (CGM)
or Generalized Minimal Residual Method (GMRES) [23]. A combination
of both is also thinkable where the multigrid method is used as a precondi-
tioner for either the CGM or the GMRES method. In contrast, a parallel
direct solver doesn’t seem to be a good choice as it usually doesn’t scale as
efficiently to large numbers of cores and its memory consumption is larger
compared to iterative methods.

The multigrid method is a well-known, fast and efficient algorithm to
solve many classes of problems including the linear and nonlinear elliptic,
parabolic, hyperbolic, Navier-Stokes equation, and Magnetohydrodynamics
(MHD) [5, 13, 18, 20, 25]. Although the multigrid method is complex to
implement, researchers in many areas think of it as an essential algorithm
and apply it to their codes because the number of operations of the multigrid
method depends on the degrees of freedom times the number of levels (log
of the number of degrees of freedom).

To implement and analyze the multigrid method, we have to consider two
main parts of the multigrid algorithm, the intergrid transfer operators and
the smoothing operator, separately. The intergrid transfer operators depend
on the discretization scheme and are highly related with the discretization
of the matrix. The smoothing operator will be implemented according to
the matrix-vector multiplication. So we have to determine the appropriate
discretization method which includes the generation of the matrix and an
efficient implementation of the matrix-vector multiplication.

If a multigrid solver converges, it usually converges very fast which is
the case on most problems. However, the multigrid method as a solver does
not guarantee convergence. In contrast, iterative Krylov subspace methods,
which include the CGM and GMRES, guarantee convergence and can be
further improved by preconditioners to speed up the convergence rate.

The multigrid method is also well-known to act as a very efficient pre-
conditioner. The preconditioned CGM can be used only for symmetric and
positive definite problems and has to use the A-norm instead of the L2-
norm. For non-symmetric or non-positive definite systems, which can arise
e.g. through the boundary condition treatment the GMRES method has to
be used. In general, the preconditioned system of a symmetric system is
not symmetric for the same inner product. However under certain condi-
tions such a system can be symmetric in a different inner product (A-inner
product or energy inner product) and the less costly CGM method can be

4



used. The preconditioned GMRES works for non-symmetric or non-positive
definite problems, but needs more working memory. To reduce the working
memory in GMRES, we can use Restart GMRES which does not strictly
guarantee the convergence, but converges for most problems.

In section 3, we explain the basics of the multigrid method and related
issues as e.g. the implementation of the program in serial and parallel ver-
sions. We describe the model problem, its discretization and the intergrid
transfer operators in section 4. Then, we explain the parallelization of the
program in section 5. An overview of the numerical experiments of the
multigrid method is given in section 6. Finally, the scaling properties of the
multigrid method on HPC-FF at the Jülich Supercomputing Center (JSC)
are shown in section 7.

5



3 The multigrid method as a solver and precondi-
tioner

In this section, we consider and discuss the issues about the implementation
of the multigrid method as a solver and as a preconditioner for the iterative
Krylov subspace method.

3.1 Basics of the multigrid method

We start to explain the multigrid method in an abstract form as in [3]. We
consider the finite functional spaces {Vk} for k = 1, . . . , J and operators
Ak : Vk → Vk and the intergrid transfer operators as e.g. the prolongation
operator Ik : Vk−1 → Vk and the restriction operator P 0

k−1 : Vk → Vk−1

defined by

(Ikv, w)k = (v, P 0
k−1w)k−1, ∀v ∈ Vk−1, ∀w ∈ Vk, (3.1)

for the inner products (·, ·)k of Vk.
Let Rk : Vk → Vk for k = 1, . . . , J be the linear smoothing operators,

RT
k denotes the adjoint of Rk with respect to the inner product (·, ·)k, and

defined by

R
(l)
k =

{
Rk, l is odd,
RT

k , l is even.
(3.2)

The multigrid operator Bk : Vk → Vk is defined recursively as follows.

Multigrid Algorithm (MG): Let 1 ≤ k ≤ J and p be a positive
integer. Set B1 = A−1

1 (lowest level solver). Assume that Bk−1 has been
defined then Bkg for g ∈ Vk will be defined by

(1) Set x0 = 0 and q0 = 0. (initialization)

(2) Define xl for l = 1, . . . , m(k) by

xl = xl−1 + Rl
k(g −Akx

l−1). (pre-smoothing)

(3) Define ym(k) = xm(k) + Ikq
p, where qi for i = 1, . . . , p is defined by

qi = qi−1 + Bk−1[P 0
k−1(g −Akx

m(k))−Ak−1q
i−1]. (correction)

(4) Define xl for l = m(k) + 1, . . . , 2m(k) by

xl = xl−1 + Rl
k(g −Akx

l−1). (post-smoothing)

6



(5) Set Bkg = y2m(k).

In the MG algorithm, m(k) gives the number of pre- and post-smoothing
iterations and can be varied as a function of k.

The different multigrid algorithms are classified by the terms: Full, V -
cycle, variable V -cycle and W -cycle multigrid algorithm according to the
number of smoothing iterations m(k) and p. The full multigrid algorithm
starts with the coarsest level to get the initial solution on the finest level,
i.e., m(k) = 0 of the first cycle. When p = 1, we call the MG algorithm a
V -cycle multigrid algorithm. The V -cycle multigrid algorithm has a fixed
m(k) = m for all levels k and the variable V -cycle has an increasing number
of smoothing iterations m(k) as the level k is decreased. When p = 2, we
call the MG algorithm a W -cycle multigrid algorithm which has a fixed
m(k) = m. We illustrate the basic idea of the V -cycle multigrid method
and its structure of levels in Figs. 1 and 2. Also, we plot the cycle of the
Full, V -cycle and W -cycle multigrid method in Fig. 3.

From the beginning of 1980’s, many results on convergence of multigrid
algorithms were published [1, 2, 4, 10, 17]. Many researchers showed that
the W -cycle multigrid algorithm has a fixed bounded error reduction factor
when a sufficient number of smoothing iterations is used. Instead the vari-
able V -cycle has just a uniform boundary of the condition number of the
preconditioned system. Even then, the V -cycle multigrid method converges
typically well in numerical experiments. The theoretical results are limited
to some specific problems, and the required number of iterations increases
as the number of levels increases. As the number of levels increases with the
logarithm of the unknowns n, the number of iterations is of O(log(n)).

The W -cycle and variable V -cycle multigrid methods need more work on
the coarser levels on which computations have poor scaling properties. So we
only consider the V -cycle multigrid method, being optimal for calculations
on the massively parallel machines such as the HPC-FF computer.

A typical implementation of the multigrid algorithm can be seen in Fig. 4.
First of all, the matrix AJ is generated on the finest level that has to be
solved

AJuJ = fJ .

This matrix and/or system will be fixed by the discretization scheme which is
highly dependent on the partial differential equation given by the physicist.
Depending on the particular multigrid algorithm being chosen one can either
generate the matrices Ak on each level k in the same way as AJ was generated
or instead in a more abstract manner by multiplying the matrices Ak+1 with
the intergrid transfer operators from both sides.

7



A Multigrid V-cycle

smoother

Finest Grid

Restriction

transfer from fine 

to coarse grid

First Coarse Grid

coarse grid has fewer

cells (less work and 

storage required)

Recursively apply 

this idea until we have an 

easy problem to solve

Prolongation

transfer from coarse

to fine grid

Figure 1: Basic idea of the V -cycle multigrid method.

8



Figure 2: The different levels of the V -cycle multigrid method.

(a) Full multigrid (b) V -cycle MG (c) W -cycle MG

Figure 3: Full, V -cycle and W -cycle multigrid method with four levels.

9



MGCycle(k,Ak,uk, fk)
If k = 0, the uk = A−1

k fk
else GaussSeidelIter(Ak,uk, fk)

rk = fk −Akuk

qk−1 = P 0
k−1rk

xk−1 = 0
MGCycle(k − 1, Ak−1,xk−1,qk−1)
if p = 2 (W -cycle), then

rk−1 = qk−1 −Ak−1xk−1

yk−1 = 0
MGCycle(k − 1, Ak−1,yk−1, rk−1)
xk−1 = xk−1 + yk−1

uk = uk + Ikxk−1

GaussSeidelIter(Ak,uk, fk)

Figure 4: An implementation of the multigrid method.

Next, we need an implementation of the smoothing operators which can
be used as an iterative solver. The smoothing operators have to be imple-
mented on each level except on the lowest one.

Then, we need to generate the intergrid transfer operators, in detail the
restriction and prolongation operators which have the adjoint relation with
each other on the same level.

Finally, we have to implement the lowest level solver which provides an
exact solution on the lowest level. It can be either a direct method or an
iterative method.

We will consider the issues of the implementation of the matrices and
operators in the following sections.

3.2 Discretization scheme

To solve a given partial differential equation, we have to determine the dis-
cretization scheme acting on the selected meshes. There are many different
discretization schemes and they have quite different properties. So at the
beginning, a decision has to be made according to the problem under con-
sideration. In this section, we summarize the properties of the well-known
discretization schemes as, e.g. the finite difference method (FDM), the finite

10



element method (FEM), and the finite volume method (FVM). However, we
will avoid the spectral method as it leads to dense matrices which are most
efficiently solved by direct methods and not iterative ones, like the multigrid
method.

The numerical solution to the PDE is an approximation to the exact
solution and is obtained by using a discrete representation to the PDE at
the points xj . Let us denote this numerical solution as U such that

Uj ≈ u(xj).

Depending on the location of the points xj , we can classify the discrete
scheme as cell-centered or vertex-centered. Thus, the numerical solution is
a collection of finite values

U = [U1, U2, . . . , Um].

The finite different method (FDM): The FDM starts from the def-
inition of the derivative in calculus

∂u

∂x
(xj) = lim

h→0

u(xj + h)− u(xj)
h

.

We use this formula with a small finite value of h = ∆x, i.e., we approximate

∂u

∂x
(xj) ≈ u(xj + h)− u(xj)

h
(forward difference).

To analyze the error of the FDM, we consider the local truncation error
(LTE) which is the error that results by substituting the exact solution into
the finite difference formula. Errors in the approximations to the derivative
are calculated using Taylor approximations around a grid point xj , i.e.,

u(xj + ∆x) = u(xj) +
∂u

∂x
(xj)∆x +

∂2u

∂x2
(xj)

(∆x)2

2
+ O((∆x)3).

Thus,

∂u

∂x
(xj) ≈ u(xj + ∆x)− u(xj)

∆x
+

∂2u

∂x2
(xj)

∆x

2
+ O((∆x)2).

The forward difference is a first order accurate approximation to the partial
derivative ∂u

∂x at xj and the LTE is of O(∆x).

11



As shown above by invoking Taylor’s theorem, we can prove that the
LTE of FDM goes to zero as ∆x approach zero, i.e., fulfills consistency.

To show the convergence of the discretization problem, one usually ap-
plies the Lax-Equivalence Theorem, i.e., proof its stability.

Lax-Equivalence Theorem: A consistent approximation to a well-
posed problem is convergent if and only if it is stable.

The stability implies that the numerical solution remains bounded at
any given point in time t for the time dependent problem. In general,
the stability of the FDM scheme is harder to prove than consistency. The
stability of the FDM scheme can be proved using either

- Eigenvalue analysis of the matrix representation of the FDM

- Fourier analysis on the grid (von Neumann analysis)

- In the case of hyperbolic PDEs, computing the domain of dependence
of the numerical scheme resulting, e.g. in the CFL condition

The FDM can be easily understood without higher mathematical knowl-
edge and its consistency can be usually shown without difficulty. But, the
FDM scheme needs special treatment on general domains in two- or three-
dimensions.

The finite element method (FEM): For a given PDE, we have a
weak formulation in the functional space V by multiplying both sides by
an arbitrary test function v ∈ V and integrating over volume. After the
discretization of the domain (Th), we define a finite-dimensional functional
space Vh which can be either a subspace of V (conforming) or not (non-
conforming). Usually, we need the property that functions in Vh can get
arbitrarily close to functions in V as h decreases to zero.

We construct the basis functions {φj}M
j=1 of the finite dimensional space

Vh which have a local support. Then we approximate the solution u and the
test function v with the basis functions, i.e.,

u(x) ≈ uh(x) =
M∑

j=1

ujφj(x), v(x) =
M∑

j=1

vjφj(x).

Because vj can be an arbitrary vector, we can choose the unit vector
ej = (0, . . . , 0, 1, 0, . . . , 0) and receive M equations for M unknowns uj .
Thus, the discretization of the derivatives results in a linear system.

12



The FEM has a high degree of flexibility and can be applied to compli-
cated geometries. Also, we can easily choose higher-order approximations.
There is always a strong mathematical foundation to understand and apply
the FEM to a PDE.

The finite volume method (FVM): Many PDEs of interest are de-
rived from physical models with underlying conservation laws, i.e., the rate
of change of u(x, t) within a volume Ω is equal to the flux past the boundary

∂

∂t

∫

Ω
u(x, t) dx +

∫

∂Ω

−→
f (u) · −→n ds = 0

where f is a flux function. Instead of the pointwise approximations on
a grid, the FVM approximates the average integral value on a reference
volume which means that the solution of the FVM satisfies the conservation
law within the numerical errors.

The FVM can handle discontinuities in solutions as well as the natural
choice of heterogeneous materials as one can assign each grid cell different
material parameters. Even though the analysis for convergence, accuracy
and stability of the FVM can not be proven without a strong mathematical
foundation in contrast to the FEM, many authors [6, 7, 8, 9, 11, 12, 17, 21]
have developed corresponding methods to show the convergence, accuracy
and stability of the FVM.

3.3 Intergrid transfer operators

The intergrid transfer operators are key operators for the multigrid method.
They consist of the fine-to-coarse (restriction) and the coarse-to-fine (pro-
longation) transfer operators. These two operators are adjoint to each other
on a certain inner product of the vector space.

According to how the intergrid transfer operators are constructed, we
can classify them into the geometric and algebraic multigrid method.

The geometric multigrid method (GMM) was studied at first and
had a very good performance on many interesting problems including the
Poisson problem and the Navier Stokes problem. The intergrid transfer op-
erators in the GMM can be defined according to the available geometric
information and the chosen discretization scheme. In the conforming cases,
there exists the so-called injection operators from the coarse level function
space to the fine level function space. With the help of these injection opera-
tors the intergrid transfer operators can be defined. However, such injection

13



operators do not exist for the nonconforming cases, so one may define the
intergrid transfer operators as in [17]. There is a minimum approximation
order of the intergrid transfer operators according to the approximation or-
der of the discretization scheme [25]. The order of the intergrid transfer
operators clearly affects the convergence rate per iteration of the multigrid
method as shown in [19]. Usually, the higher order intergrid transfer op-
erators have better convergence rate per iteration but usually need more
CPU operations and/or are more complicated to implement. So we need
to compromise the order of the intergrid transfer operators in the multigrid
method. For the implementation of the GMM, one needs to know about the
domain, i.e., how to handle the geometric information and discretization.
Due to these requirements of the GMM, the implementation of a problem
with complex geometry can be very difficult. Hence, for some problems the
performance of the GMM can be too poor to be acceptable.

The finest meshes in the GMM usually are constructed by refinement
from the coarsest mesh. Such an approach is called a “down-top approach”.
It is preferred by mathematicians as it is easy to understand and well em-
bedded in the mathematical theory. However, this approach has some re-
strictions when it is applied to problems with complex domains including
e.g. small holes inside the domain.

Instead one can construct the coarser meshes including the coarsest mesh
itself from the finest mesh. We call such an approach a “top-down ap-
proach”. The top-down approach can be applied to any complex domain,
but causes other problems which do not occur in the down-top approach.
Such problems which are hardly considered by mathematicians have to be
investigated and to be resolved. For the special problem of a rectangular
domain with an inner empty space and an internal conducting structure, we
will use the Neumann boundary condition on the inner empty space and the
Dirichlet boundary condition on the internal conducting area. We consider
two kinds of treatment for the Neumann boundary condition. In addition,
we will face the relative positioning effect of the internal conducting area
in relation to the uniformly structured mesh of the rectangular domain in
Sec. 6.4

The algebraic multigrid method (AMM) is a black-box method
which can be applied to any linear system. In the AMM, the intergrid
transfer operators are defined according to the matrix of the system and the
matrix equations on the coarser levels are defined by the intergrid transfer
operators. The AMM only considers the finest meshes to solve the PDE, so
many researchers are developing the AMM as program libraries to iteratively

14



solve matrix equations.
The convergence rate of the AMM per iteration is usually slower than

the GMM, but improvements are being made with the use of sophisticated
algorithms to generate the intergrid transfer operators by considering the
matrices with methods from graph theory. Good results with fast conver-
gence rates per iteration on the AMM are now starting to be achieved.
Nevertheless, current approaches still need a lot of work to generate efficient
intergrid transfer operators.

3.4 Smoothing operators

The smoothing operator is another essential part of the multigrid method.
The starting point of the multigrid method is that many iterative meth-
ods tend to reduce the high-frequency components of the error rapidly but
reduce the low-frequency components of the error much more slowly. So
good smoothing operators reduce the high-frequency components of the er-
ror rapidly. Another desirable property for a smoothing operator is its simple
and easy implementation. Traditionally, the damped Jacobi and the Gauss-
Seidel method are preferred by many researchers because these two methods
have the above mentioned properties. But, many other iterative methods
can be used as smoothing operators. Next, we will summarize these iterative
methods with their advantages and disadvantages.

The simplest type of iterative method for solving

Ax = b (3.3)

with the N ×N matrix A has the form

x(k+1) = Gx(k) + c (3.4)

where the matrix G and vector c are chosen so that a fixed point of Eq. (3.4)
is a solution to Eq. (3.3). This method is said to be stationary if G and c
are constant over all iterations. One way to obtain a suitable matrix G is
by the following splitting ansatz,

A = M −N

with the non-singular matrix M . We can then take G = M−1N and c =
M−1b, so that the iterative scheme becomes

x(k+1) = M−1Nx(k) + M−1b, i.e., Mx(k+1) = Nx(k) + b.

15



Thus, the iteration scheme is convergent [14, 22] if

ρ(G) = ρ(M−1N) < 1.

To describe the following iterative methods, we split

A = D + L + U (3.5)

where D is a diagonal matrix and L and U are the strict lower and upper
triangular parts of A, respectively.

The Richardson iterative method is the simplest iterative method with

x(k+1) = x(k) +
1

λN

(
b−Ax(k)

)
, i.e., G = I − 1

λN
A, and c =

1
λN

b (3.6)

where λN is the largest eigenvalue of A or an appropriate approximation.
The smoothing property of the Richardson method can be proved easily. So
this method was used for the analysis of the multigrid method at the end of
70’s and the beginning of 80’s.

The Jacobi method is a simple iterative method with M = D and
N = −(L + U), i.e.,

x(k+1) = D−1(b− (L + U)x(k)) = −D−1(L + U)x(k) + D−1b,

and is guaranteed to converge under conditions that are often satisfied in
practice. But, the convergence rate of the Jacobi method is usually unac-
ceptably slow. Also, a simple analysis on the convergence rate of the Jacobi
method shows that the Jacobi method reduces the high- and low-frequency
components of the error relatively slowly. Instead, it reduces the middle
range frequency components of the error rapidly [16].

The damped Jacobi method is defined by

x(k+1) = (1−ω)x(k) + ωD−1(b− (L + U)x(k)) = (I −ωD−1A)x(k) + wD−1b.

The damped Jacobi method has been developed to further improve the
smoothing property of the Jacobi method at the cost of a damped conver-
gence rate. For optimal smoothing property the tuning parameter is within
the range of ω = 0.6 ∼ 0.8. However, the (damped) Jacobi method requires
a doubled storage space for the solution because the old values are needed
throughout each sweep, and therefore the updated values of the solution

16



cannot overwrite the old ones until the sweep has been completed. On the
other hand, due to this property, the Jacobi method is well suited on par-
allel machines because it doesn’t introduce any additional communication
overhead. Hence, it can be used to produce results which are identical for
both the serial and parallel version of the code. This is especially helpful
when debugging the parallel implementation of the multigrid algorithm.

The Gauss-Seidel method uses each updated component of the solution
as soon as it has been computed, i.e., M = D+L and N = −U . The Gauss-
Seidel method can be written as

x(k+1) = D−1(b− Lx(k+1) − Ux(k)) = (D + L)−1(b− Ux(k)).

In addition to faster convergence, another benefit of the Gauss-Seidel method
is that a doubled storage is not needed for the solution, since the newly com-
puted components can overwrite the old ones immediately. However, this
feature makes the implementation of the algorithm typically harder on par-
allel machines. An exception is the special case of the red-black Gauss-Seidel
method on structured grids.

The successive over-relaxation (SOR) uses the step of the next
Gauss-Seidel iteration as a search direction, but with a fixed search pa-
rameter denoted by ω (0 < ω < 2), i.e, x(k+1) = (1 − ω)x(k) + ωx

(k+1)
GS .

Hence, the SOR method can be written as

x(k+1) = x(k) + ω[D−1(b− L(k+1) − Ux(k))− x(k)]

= (D + ωL)−1[(1− ω)D − ωU ]x(k) + ω(D + ωL)−1b.

The SOR can accelerate the convergence rate of the Gauss-Seidel method.
Like the Gauss-Seidel method, the SOR method makes repeated forward
sweeps through the unknowns, updating them successively. The symmet-
ric SOR (SSOR) alternates forward and backward sweeps through the
unknowns. SSOR is not necessarily faster than SOR, but it has the advan-
tage of being symmetric which makes SSOR useful as a preconditioner.

The Kancmarz method is introduced in [15] and defined as an iteration

x(k+1) = x(k) +
bi − aT

i x(k)

aT
i ai

ai,

where ai be the i-th column vector. Kaczmarz’s approach is a projection
method that is also referred to as algebraic reconstruction technique and is

17



used for solving linear systems from image reconstruction problems. The
Kaczmarz method is defined by applying the Gauss-Seidel method on AAT

which is always symmetric and positive, so it can be applied on singular
problems. This method can also be used as a smoother in the multigrid
method as shown in [16].

The alternative direction iteration (ADI) method, as introduced
by Peaceman and Rachford, is an iterative scheme for Ax = b (A = A1 +A2

with A1 and A2 symmetric and positive definite) which consists of solving
the following systems ∀k ≥ 0

(I + α1A1)x(k+1/2) = (I − α1A2)x(k) + α1b,

(I + α2A2)x(k+1) = (I − α2A1)x(k+1/2) + α2b,

where α1 and α2 are two real parameters. For the 2-dim Poisson prob-
lem, A1 and A2 are the second order derivative operators on the x- and
y-directions. So the ADI method solves two one-dim problems which can be
easily analyzed and solved. This method is effective when the domain has a
relatively long width in comparison with the height or if the coefficients ε11

and ε22 of the elliptic PDE

−ε11
∂2u

∂x2
− ε22

∂2u

∂y2
= f

are largely different in absolute value such as e.g. ε11 = 1 and ε22 = 10000.

The incomplete LU (ILU) factorization method is a process that com-
putes P = LinUin where Lin is a lower triangular matrix and Uin is an upper
triangular matrix. These matrices are approximations of the exact matri-
ces L and U of the LU factorization, but have the same sparse pattern as
the lower- and upper-part of the original matrix. The ILU method has a
very good performance as a smoother for the multigrid method, but it is
complicated to implement and very hard to analyze.

3.5 The Krylov subspace method and preconditioners

We introduce the Krylov subspace of order m

Km(A; v) = span{v,Av, . . . , Am−1v}. (3.7)

The Krylov subspace is a subspace of the set spanned by all vectors u ∈ RN

that can be written as u = pm−1(A)v, where pm−1 is a polynomial in A of

18



degree ≤ m− 1. Clearly, we have K1(A; v) ⊆ K2(A, v) ⊆ K3(A, v), . . ., and
the dimension increases at most by one for each step.

Theorem 3.1 Let A ∈ RN×N and v ∈ RN . The Krylov subspace Km(A; v)
has a dimension equal to m if and only if the degree of v with respect to
A, denoted by degA(v), is not less than m, where the degree of v is defined
as the minimum degree of a monic non-null polynomial p in A, for which
p(A)v = 0.

We can classify the Krylov methods by how they compute the best ap-
proximation to the solution in Km(A; v).

- The residual rm = b − Axm is orthogonal to Km(A; v): Conjugate
Gradient

- The residual rm has a minimum norm for xm in Km(A; v): GMRES
and the minimal residual method (MINRES)

- The residual rm is orthogonal to a different space Km(AT ; v): BiCon-
jugate Gradients

- The error dm has a minimum norm: the symmetric LQ method (SYMMLQ).

The above mentioned conjugate gradient method (CGM) works only if A
is symmetric and positive definite to the inner product of the vector space.
For the CGM, we have the following theorems about its termination and
convergence rate.

Theorem 3.2 Let A be a symmetric and positive matrix. The conjugate
gradient method to solve Eq. (3.3) terminates after at most N steps. More-
over, the error d(m) at the m-th iteration (with m < N) is

‖d(m)‖A ≤ 2ρk‖d(0)‖A, with ρ =

√
κ(A)− 1√
κ(A) + 1

(3.8)

where κ(A) is the condition number of A, i.e., κ(A) = λN
λ1

with the largest
eigenvalue λN and the lowest eigenvalue λ1 of A.

Theorem 3.2 can be applied for any Krylov method and shows that the
convergence rate ρ is very good when κ(A) is small and the convergence rate
ρ is converging to 1 as κ(A) is increasing. For large real-world problems, the
condition number κ(A) is very large and the Krylov space method converges
very slowly.

19



In practice, the Krylov space solvers are combined with precondition-
ing: Ax = b is replaced by

MA︸︷︷︸
Â

x = Mb︸︷︷︸
b̂

, or AM︸︷︷︸
Â

M−1x︸ ︷︷ ︸
x̂

= b, or MLAMR︸ ︷︷ ︸
Â

M−1
R x︸ ︷︷ ︸
x̂

= MLb︸︷︷︸
b̂

.

The first two cases are referred to as left and right preconditioning,
respectively, while for the last case we apply a split preconditioner MLMR.
To be a good preconditioner, Â needs a small condition number, i.e., M and
MLMR are approximate inverses of A (M−1 ≈ A). The preconditioner M
also has the properties that the system M−1y = z can be easily solved for
any z. Applying a preconditioned Krylov subspace method just means to
apply the method to the preconditioned problem Âx̂ = b̂ instead of Ax = b.

To use preconditioned CGM, we have to check the symmetry of the
preconditioner to the inner product. We summarize the implementation
of the CGM and preconditioned CGM (PCGM) in Fig. 5. In Fig. 5 (b),
compared to the CGM we need only one step more to compute z(k + 1) =
Mr(k+1).

For the non-symmetric problem, we consider the GMRES only. The
GMRES can be considered as a generalization of the MINRES algorithm
and is theoretically equivalent to the Generalized Conjugate Residual (GCR)
method and to the ORTHODIR [23]. The GMRES terminates at most
after N iterations, yielding the exact solution. We describe the GMRES
algorithm in Fig. 6 (a). For the GMRES method, the number of vectors for
which storage is required increases as k and the number of multiplications
as 1

2k2N when the iteration k is increased. To remedy this difficulty, we use
the restarted GMRES method (GMRES(m)) which restarts the algorithm
every m steps where m is some fixed integer parameter as in Fig. 6 (b).

For the GMRES and GMRES(m) algorithms in Fig. 6, we have to im-
plement a routine to get yk which minimizes

‖β1 − H̄myk‖

in step 3 as in [23].
We obtain the preconditioned GMRES (PGMRES) when we apply the

GMRES to the preconditioned problem Âx̂ = b̂.
The multigrid method is also a well-known preconditioner. So we use

PCGM and PGMRES with a multigrid preconditioner because the conver-
gence of PCGM and PGMRES is always guaranteed.

20



Given x(0) ∈ RN ,
set r(0) = b−Ax(0)

and p(0) = r(0)

then, for k = 0, 1, . . .,
until convergence, compute

1. αk =
r(k)T r(k)

p(k)T Ap(k)
,

2. x(k+1) = x(k) + αkp
(k),

3. r(k+1) = r(k) − αkAp(k),

4. βk =
r(k+1)T r(k+1)

r(k)T r(k)
,

5. p(k+1) = r(k+1) + βkp
(k).

(a) CGM

Given x(0) ∈ RN ,
set r(0) = b−Ax(0),
z(0) = Mr(0) and p(0) = z(0)

then, for k = 0, 1, . . .,
until convergence, compute

1. αk =
(z(k))

T
r(k)

(p(k))T
Ap(k)

,

2. x(k+1) = x(k) + αkp
(k),

3. r(k+1) = r(k) − αkAp(k),

4. z(k+1) = Mr(k+1),

5. βk =
(z(k+1))

T
r(k+1)

(z(k))T
r(k)

,

6. p(k+1) = z(k+1) + βkp
(k).

(b) PCGM

Figure 5: The implementation of the CGM and PCGM.

21



1. Start: Choose x(0) ∈ RN ,
set r(0) = b−Ax(0)

and v(1) =
r(0)

‖r(0)‖ .

2. Iterate: For k = 0, 1, . . .,
until satisfied do:
hi,j = (Avj , vi), i = 1, 2, . . . , j,
v̂j+1 = Avj −

∑j
i=1 hi,jvi,

hj+1,i = ‖v̂j+1‖, and

vj+1 =
v̂j+1

hj+1,j
,

3. From the approximate solution:
x(k) = x(0) + Vkyk,
where yk minimizes
‖βe1 − H̄myk‖, yk ∈ Rm.

(a) GMRES

1. Start: Choose x(0) ∈ RN ,
set r(0) = b−Ax(0)

and v(1) =
r(0)

‖r(0)‖ .

2. Iterate: For k = 0, 1, . . . , m− 1
do:
hi,j = (Avj , vi), i = 1, 2, . . . , j,
v̂j+1 = Avj −

∑j
i=1 hi,jvi,

hj+1,i = ‖v̂j+1‖, and

vj+1 =
v̂j+1

hj+1,j
,

3. From the approximate solution:
x(k) = x(0) + Vkyk,
where yk minimizes
‖βe1 − H̄myk‖, yk ∈ Rm.

4. Restart: Compute
r(m) = b−Ax(m):
if satisfied the stop. else compute

x(0) = x(m), v(1) =
r(m)

‖r(m)‖
and go to 2.

(b) GMRES(m)

Figure 6: The implementation of the GMRES and restarted GMRES.

22



4 The model problem and its discretization

From now on, we focus on the PDE defined on the rectangular domain with
an internal conducting structure and an inner empty space. Such a domain
represents the simulation domain for the outer plasma of confined fusion
experiments such as ASDEX, JET, or ITER.

We consider the following second order partial differential equation:

−
[

∂

∂x
ε(x, y)

∂

∂x
+

∂

∂y
ε(x, y)

∂

∂y

]
φ(x, y, t) = ρ(x, y, t) (4.1)

with the boundary condition for the outer wall

φw(x, y, t) = 0,

∮ −→
E w · d−→S =

1
ε0

σw, (4.2)

where integration goes over the wall surface and Ew and σw denote the elec-
tric field and total surface charge at the outer wall, the boundary condition
at the inner empty surface

En(x, y, t) =
∂φ(x, y, t)

∂n
= 0, (4.3)

where En is the electic field normal to the surface (n is the normal vector
on the boundary), and the boundary condition for the internal conductor

φc(x, y, t) = φc(t) (4.4)

as in Fig. 7.
It is well known that on the corners of the inner empty space the solu-

tion φ of Eq. (4.1) for a general function ρ has corner singularities. Such cor-
ner singularities affect the performance of the multigrid algorithm because
the theory predicts that the convergence factor of the multigrid algorithm
is a function of the regularity of the general solution. The same problem
occurs for the internal conducting area. However, as the internal conduct-
ing area is very small compared to the whole simulation domain we suppose
that at least the impact of the corner singularities triggered by the internal
conducting area should be of minor importance. Another more dominant
problem seems to be the relative orientation, i.e., the matching of the inner
empty space and the internal conducting area with the nodal points of the
grids of the coarser levels.

23



φw(x, y, t) = 0

En(x, y, t) = 0

0 Nx

Ny

(x0, y0)
(x1, y0)

(x0, y1) (x1, y1)

(xi
0, y

i
0)

(N0
x , N0

y )

(xi
1, y

i
1)

(N1
x , N1

y )

φc(x, y, t) = φc(t)

Figure 7: Rectangular domain with internal conducting structure [¥: inter-
nal structure (conductor)]

4.1 The finite difference method

For compatibility reason regarding to KinSOL2D project, we consider the
finite difference scheme on uniform meshes which is easy to understand and
the code developer use it. By using the finite difference scheme, we get the
following finite difference equation for Eq. (4.1)

−
(φi+1,j − φi,j)εi+ 1

2
,j + (φi−1,j − φi,j)εi− 1

2
,j

∆x2

−
(φi,j+1 − φi,j)εi,j+ 1

2
+ (φi,j−1 − φi,j)εi,j− 1

2

∆y2
= ρi,j ,

(4.5)

where

εi,j± 1
2

=
1
2
(εi+ 1

2
,j± 1

2
+ εi− 1

2
,j± 1

2
), εi± 1

2
,j =

1
2
(εi± 1

2
,j+ 1

2
+ εi± 1

2
,j− 1

2
)

and εi± 1
2
,j± 1

2
are dielectric constants defined at the cell center as in Fig. 8.

The boundary condition on the outer wall (Dirichlet boundary condition)

24



is

φ0,j = φNx,j = φi,0 = φi,Ny = 0, for i = 0, . . . , Nx and j = 0, . . . , Ny.
(4.6)

As an example, Eq. (4.5) at (1, j) will be

−
(φ2,j − φ1,j)ε 3

2
,j − φ1,jε 1

2
,j

∆x2

−
(φ1,j+1 − φ1,j)ε1,j+ 1

2
+ (φ1,j−1 − φ1,j)ε1,j− 1

2

∆y2
= ρ1,j .

The boundary condition for the internal conductor area (Dirichlet bound-
ary condition) is

φi,j = φc (4.7)

for (i, j) on the conductor surface S. As an example, Eq. (4.5) at (i, j) where
c = (i− 1, j) is part of the internal conductor will be

−
(φi+1,j − φi,j)εi+ 1

2
,j − φi,jεi− 1

2
,j

∆x2

−
(φi,j+1 − φi,j)εi,j+ 1

2
+ (φi,j−1 − φi,j)εi,j− 1

2

∆y2
= ρi,j +

φcεi− 1
2
,j

∆x2
.

The boundary condition on the inner empty surface (Neumann boundary
condition) is

∂φ

∂x
= 0, on xi

0 × (yi
0, y

i
1)

∂φ

∂y
= 0, on (xi

0, x
i
1)× yi

0

−∂φ

∂x
= 0, on xi

1 × (yi
0, y

i
1)

−∂φ

∂y
= 0, on (xi

0, x
i
1)× yi

1,

and, by using the central difference scheme on the boundary point (as in

25



◦

◦

× ×

× ×

•

• • •

• • •

(i− 1
2 , j − 1

2)

(i, j)

(i + 1
2 , j + 1

2)
(i, j + 1

2)

(i, j − 1
2)

◦
(i− 1

2 , j)
◦

(i + 1
2 , j)

••j

i

Figure 8: Notation for the finite difference equations (•: node points, ×:
cell center for ε, ◦: edge points for ε).

Fig. 9 (a), we have

φN0
x+1,j − φN0

x−1,j

2∆x
= 0, for j = N0

y + 1, . . . , N1
y − 1,

φi,N0
y +1 − φi,N0

y−1

2∆y
= 0, for i = N0

x + 1, . . . , N1
x − 1,

−φN1
x+1,j − φN1

x−1,j

2∆x
= 0, for j = N0

y + 1, . . . , N1
y − 1,

−
φi,N1

y +1 − φi,N1
y−1

2∆y
= 0, for i = N0

x + 1, . . . , N1
x − 1,

(4.8)

i.e.,

φN0
x+1,j = φN0

x−1,j , φN1
x−1,j = φN1

x+1,j ,

φi,N0
y +1 = φi,N0

y−1, φi,N1
y−1 = φi,N1

y +1,
(4.9)

for j = N0
y + 1, . . . , N1

y − 1 and i = N0
x + 1, . . . , N1

x − 1. As an example,
Eq. (4.5) at (Nx, j), for j = N0

y + 1, . . . , N1
y − 1, will be

−
(φi−1,j − φi,j)(εi+ 1

2
,j + εi− 1

2
,j)

∆x2

−
(φi,j+1 − φi,j)εi,j+ 1

2
+ (φi,j−1 − φi,j)εi,j− 1

2

∆y2
= ρi,j ,

26



◦ ◦× ×• • • •
i− 1 i, P i + 1 i− 1 i i + 1P

(a) (b)

Figure 9: Notation for the finite difference scheme on the Neumann bound-
ary condition (•: node points, ×: real boundary points, ◦: node points in
the inner empty space).

Now, we consider the handling of the Neumann boundary condition when
the node (usually on coarser meshes) does not lay on the real boundary, i.e.,
the real boundary lies between two nodes as in Fig. 9 (b).

We assign the Neumann boundary condition on the boundary point to
the solution φ by interpolating the value of the solution. As an example, we
look at the point on xi

0 × (yi
0, y

i
1) (P as in Fig. 9 (b)).

First, we consider as the simplest function, a linear function on (xi, xi+1)
which is generated by the values of the nodes xi and xi+1, i.e.,

φ(x) =
xi+1 − x

xi+1 − xi
φ(xi) +

x− xi

xi+1 − xi
φ(xi+1).

If we apply the Neumann boundary condition to the function on the point
P , we have

∂φ

∂x
=

φi+1 − φi

xi+1 − xi
= 0,

i.e.,
φi+1 = φi. (4.10)

Second, we consider a quadratic function on (xi−1, xi+1) which is gener-
ated by the values of the nodes xi−1, xi, and xi+1, i.e.,

φ(x) =
1

2h2
(φi+1 − 2φi + φi−1)x2

− 1
2h2

((xi + xi−1)φi+1 − 2(xi−1 + xi+1)φi + (xi + xi+1)φi−1)x

+
1

2h2
(xixi−1φi+1 − 2xi−1xi+1φi + xixi+1φi−1).

If we imply the Neumann boundary condition to the function on the
point P , we have,

∂φ

∂x
=

2(x− xi) + h

2h2
φi+1 − 2(x− xi)

h2
φi +

2(x− xi) + h

2h2
φi−1 = 0,

27



i.e.,

φi+1 =
4(x− xi)

2(x− xi) + h
φi − 2(x− xi)− h

2(x− xi) + h
φi−1. (4.11)

Here, we give an example of φi+1 in as in Eq. (4.11).
If x = xi [same as in Fig. 9 (a)], then φi+1 = φi−1.
If x = (xi + xi+1)/2 = x + h/2 (P is the mid point of the two node

points), then φi+1 = φi is the same as in the zeroth order case.
If x = xi+1 = x + h, then φi+1 = 4

3φi − 1
3φi−1.

If x = xi + h
4 , then φi+1 = 2

3φi + 1
3φi−1.

If x = xi + 3
4h, then φi+1 = 6

5φi − 1
5φi−1.

Remark. We could use higher order functions to implement the Neu-
mann boundary condition. But, the order of the boundary scheme is related
to the order of the approximating scheme of the partial differential equa-
tion. Usually, the order of the difference scheme for the Neumann boundary
condition is less than or equal to the order of the scheme of the partial
differential equation, so the second order interpolation for the Neumann
boundary condition of this problem is sufficient.

4.2 The intergrid transfer operators

In this section, we describe the intergrid transfer operators in detail: the re-
striction and prolongation operators. The definition of the intergrid transfer
operators on uniform grids is very straight forward, but the definition of the
operator on boundaries with Neumann boundary condition has to be han-
dled with care.

The linear restriction operator is defined by

Pk−1u(P2i,2j) =
1
4
u(P2i,2j)

+
1
8
{u(P2i−1,2j) + u(P2i+1,2j) + u(P2i,2j−1) + u(P2i,2j+1)}

+
1
16
{u(P2i−1,2j−1) + u(P2i+1,2j+1) + u(P2i+1,2j−1) + u(P2i−1,2j+1)}

28



◦

◦

× ×

× ×

•

• • •

• • •

(2i, 2j)
◦ ◦••2j

2j − 1

2j + 1

2i2i− 1 2i + 1

Figure 10: Notation for the coarse and fine meshes.

and the linear prolongation operator is defined by

Iku(P2i,2j) = u(P2i,2j)

Iku(P2i−1,2j) =
1
2
(u(P2i−2,2j) + u(P2i,2j))

Iku(P2i,2j−1) =
1
2
(u(P2i,2j−2) + u(P2i,2j))

Iku(P2i−1,2j−1) =
1
4
(u(P2i−2,2j−2) + u(P2i−2,2j) + u(P2i,2j−2) + u(P2i,2j)).

These linear restriction and interpolation operators can be written by the
following stencil notation 


1
4

1
2

1
4

1
2 1 1

2
1
4

1
2

1
4


 .

These operators will be defined on the boundary in accordance with the
boundary condition. The values of the function on the Dirichlet boundary
are all zero and the values of the function on the Neumann boundary are
defined by the values of the function on the related interior points.

We need to know the function values at the nodes which are within the
inner empty space and near the boundary. We consider two cases, one is the
boundary at a straight piece of the inner empty space and the other is the
boundary at one of the corners of the inner empty space.

29



◦

◦

× ×

× ×

•

• • •

• • •

(2i, 2j)
◦ ◦••2j

2j − 1

2j + 1

(a)

◦

◦

× ×

× ×

•

• • •

• • •

(2i, 2j)
◦ ◦••

(b)

◦

◦

× ×

× ×

•

• • •

• • •

(2i, 2j)
◦ ◦••2j

2j − 1

2j + 1

2i2i− 1 2i + 1

(c)

◦

◦

× ×

× ×

•

• • •

• • •

(2i, 2j)
◦ ◦••

2i2i− 1 2i + 1

(d)

Figure 11: Notation of the Neumann boundary condition for the coarse and
fine meshes (dashed line: inner boundary).

30



We consider the case that the boundary is located between x2i−1 and
x2i as in Fig. 11 (a). Then we need the coarse function value u(P2i,2j) to
compute the values Iku(P2i−1,2j), Iku(P2i−1,2j−1), and Iku(P2i−1,2j+1). In
this case, we get the value u(P2i,2j) by Eqs. (4.10) or (4.11). In a similar
way, we compute u(P2i+1,2j), u(P2i+1,2j−1), and u(P2i+1,2j+1) by Eqs. (4.10)
or (4.11) to compute Pk−1u(P2i,2j) in Fig. 11 (c).

For the case of the Neumann boundary on a corner as in Fig. 11 (b),
we have two different values for u(P2i,2j) by Eqs. (4.10) or (4.11), i.e.,
one u(P2i,2j)x is from u(P2i−2,2j) and u(P2i−4,2j) and the other u(P2i,2j)y

is from u(P2i,2j−2) and u(P2i,2j−4). In this case, we use u(P2i,2j)x for
Iku(P2i−1,2j), u(P2i,2j)y for Iku(P2i,2j−1), and (u(P2i,2j)x + u(P2i,2j)y)/2 for
Iku(P2i−1,2j−1). In the same way, we compute the function value u(P2i+1,2j+1)
in Fig. 11 (d).

31



5 The parallelization concept

In this section, we consider the distribution of the domain, the data handling
and the implementation on a parallel machine.

First, the discretized domain is divided into nx × ny subdomains as
shown in Fig. 12. Each subdomain will be handled by one core. For the
inner empty space, we do not assign these parts to any core if the subdomain
is totally within the inner empty space. Hence, we can request less cores
from the batch system which is quantized in multiples of 8 for the HPC-FF
computer. As a result no more than seven cores will idle. In the future this
number could be further reduced but at the moment it seems to be justified
by the fact that it is only a small fraction of the total number of cores. In
the case of the internal conducting structure no exception is made so that
all subdomains are assigned to a core each independently of whether they
include parts of the internal conducting structure or not.

0 Nx

Ny

(x0, y0) (x1, y0)

(x0, y1) (x1, y1)

(xi
0, y

i
0)

(N0
x , N0

y )

(xi
1, y

i
1)

(N1
x , N1

y )

Figure 12: nx × ny subdomains of the rectangular domain with the inter-
nal conducting structure with nx = 4 and ny = 4 (¥: internal structure
(conductor)).

32



For each core, we classify real and ghost nodes which are positioned on
the core as shown in Fig. 13. The real nodes are part of the subdomain which
is assigned to the core. They are handled and updated by the core. Instead,
the ghost nodes are originally part of exterior subdomains being located on
other cores but nevertheless their values are needed for calculations done on
the core. Hence, the values of the ghost nodes are first updated by the core to
which they belong to as real nodes and then their values are communicated
to update the ghost node values. In the same way cells are also classified as
real and ghost cells.

0 nlx

nly

0 × × × × × × × ×

× × × × × × × ×

×
×
×
×
×
×
×

×
×
×
×
×
×
×

+ + + + + + +

+

+

+

+

+

+

Figure 13: Typical local domain on each core (×: ghost node, +: ghost
cell).

In this situation, we have to distribute the coefficient ε to each real
cell and the right hand-side function ρ to each real node. For the geometric
multigrid algorithm, we need additional routines to generate the coarser level
discretizations and to compute the ε values on the coarser levels. Finally, this
has to be tied together by data transfer routines from one core to another.
The according pseudo-code takes the following form:

1. Read in the domain and discretization information.

2. Divide it into npx×npy sub-domains and assign each domain to a core.
Each core has the information of one sub-domain and the rank of the
neighbor cores.

The list of sub-domain information is:

33



- nlx, nly : The number of intervals in each direction of the sub-
blocks

- lsx, lsy, lex, ley : The number of ghost nodes in each di-
rection and their beginning and ending, i.e., 0 or 1.

- ngx[nlx+1], ngy[nly+1] : The global number of the nodes in
each direction. Needed for coarsening.

- node[(nlx+1)*(nly+1)] : The properties of the nodes, e.g. re-
gion within the plasma, part of the inner empty surface, part of
the inner- or outer-boundary region of the plasma or part of the
internal conducting structure.

- hx, hy, px[nlx+1], py[nly+1] : The length of the interval in
each direction and the position of the node in each direction.

- eps[nlx*nly] : The value of ε for each cell.

3. Compute ε for each real cell and ρ for each real node on the finest
level.

4. Exchange of ε and ρ with neighboring cores on the finest level.

5. From the sub-domain information of the finest grid, we obtain the
sub-domain information of the coarser grid.

6. Compute the value of the matrix element on each grid level and impose
the boundary condition according to the properties of the sub-domain.

7. Generate the intergrid transfer operators on each grid level.

8. Solve the linear problem.

To solve the discretized system, we have to implement the matrix-vector
multiplication routine and a relaxation routine such as the Jacobi iteration
and/or the Gauss-Seidel iteration. Finally, the data transfer routines for the
function value on the ghost nodes are provided.

34



6 Numerical Experiments

In this section, we report the numerical results of the multigrid method as a
solver and as a preconditioner of the Preconditioned GMRES (PGMRES).
We consider test cases with an inner empty space but without an internal
conducting structure and vice versa. Finally, we will also perform test cases
for the full problem, including both the inner empty space and the internal
conducting structure.

As a measure for speed of convergence, we compute the averaged residual
error reduction factor per V-cycle iteration which is directly related to the
required number of iterations needed to reach a given residual error. As a
termination criterion for the multigrid algorithm we define a reduction of
the initial residual error on the finest level by a factor of 10−10 (the stop
criterion). The smaller the reduction factor is, the faster the convergence of
the multigrid algorithm is and the less iterations we need to reach the given
precision of the solution. In the following we will make an assessment of four
schemes: a multigrid solver with a Jacobi smoother (MGJA), a multigrid
solver with a local Gauss-Seidel smoother (MGGS), the PGMRES method
with a multigrid preconditioner using the Jacobi smoother (GMJA), and the
PGMRES method with a multigrid preconditioner using the local Gauss-
Seidel smoother (GMGS). For all cases, we run two pre-smoothing and two
post-smoothing iterations.

6.1 Validation of the discretization

We test the correct discretization of the elliptic problem on a rectangular
domain with an internal conducting structure and an inner empty space
by comparing the converged numerical solution with the exact solution.
To construct an exact solution for a zero Neumann boundary condition
on the boundary of the inner empty space, we choose the following sine
function φ(x, y):

φ(x, y) =
1

2π2
sin2 πx sin2 πy.

The Dirichlet boundary condition of the internal conductor is given by
the values φ(x, y) at the boundary of the conductor. To validate the system
on the finest level, we compute the L2-error of the solution with the exact
solution on the domain (0, 4)× (0, 4) with an inner empty space of (1, 3)×
(1, 3) and an internal conductor of (0.46875, 0.53125)×(1, 875, 2.21500). The
values of the L2-errors for different grid resolution are listed in Table 1. The
table contains the level l indicating a uniform discretization of the domain

35



with 2l × 2l cells. Thus, the mesh size h of each direction is 4.0/2l. It can
be clearly seen that the error converges by second order with respect to h,
i.e., O(h2) when the grid resolution is increased by a factor of two.

level L2 error h error ratio
7 0.00005786 0.031250000 –
8 0.00001440 0.015625000 4.0182
9 0.00000359 0.007812500 4.0082
10 0.00000090 0.003906250 4.0039
11 0.00000022 0.001953125 3.9996
12 0.00000006 0.000976562 3.9984

Table 1: Discretization error in the L2-norm and the measured error ratio
between succeeding refinements.

6.2 The local Gauss-Seidel iterative method

The Gauss-Seidel iteration is a preferred smoothing operator because it is
simple in its implementation and has a good performance. But, the Gauss-
Seidel iteration is an algorithm which involves communication when dis-
tributed over subdomains, so it becomes quite inefficient on parallel ma-
chines. A possible resolution of this problem is to perform the Gauss-Seidel
iteration exclusively on each core, i.e., in one Gauss-Seidel cycle no data com-
munication between cores takes place. Such a reduced algorithm is called
the local Gauss-Seidel iteration as it applies the Gauss-Seidel iteration only
locally on each core. The performance of the local Gauss-Seidel iteration
typically degrades with an increasing number of cores and can reach, in the
worst case, the performance of the Jacobi iteration.

In the following we investigate the convergence rate of the local Gauss-
Seidel iteration both as a multigrid solver and as a multigrid preconditioner
for the PGMRES method. In this context it is of special interest to see
the influence of the number of cores on the convergence rate which will be
measured by the averaged residual error reduction factor. We consider two
different domains, one is the full square domain with an internal conducting
area of (0.484375, 0.515625)× (1.9375, 2.0625) (FSQc8) and the other is the
square domain with an inner empty space of (1.0, 3.0) × (1.0, 3.0) with an
internal conducting area of (0.484375, 0.515625)× (1.9375, 2.0625) (Halc8).

For each domain, we consider different finest levels, e.g. the levels 12,
13, and 14 in combination with a total number of levels, as e.g. 8 and 9

36



8 16 32 64 128 256 512 1024 2048

Averaged residual error
reduction factor
(log scale) # of iter.

number of cores (log scale)

ÃÃÃÃ

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦+++++++++++++++++++++++++++++++++++++++++++++
¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦

0.14678 12

0.170125 13

(a) The multigrid method using a local Gauss-Seidel iteration as a
smoother.

8 16 32 64 128 256 512 1024 2048

Averaged residual error
reduction factor
(log scale) # of iter.

number of cores (log scale)

0.00774 9
((((`̀ `̀

HHHH

◦◦◦◦◦◦
◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

++++++++++++++++++++++++++++++++++++++++++++
+

¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦
¦¦¦¦

(b) The PGMRES with a multigrid preconditioner using a local
Gauss-Seidel iteration as a smoother.

Figure 14: The averaged residual error reduction factor as a function of the
number of cores used in the parallel run for the domain FSQc8, for symbols
please see text.

37



8 16 32 64 128 256 512 1024 2048

Averaged residual error
reduction factor
(log scale) # of iter.

number of cores (log scale)

((((

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦+++++++++++++++++++++++++++++++++++++++++++++
¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦

0.14678 12

0.170125 13

(a) The multigrid method using a local Gauss-Seidel iteration as a
smoother.

8 16 32 64 128 256 512 1024 2048

Averaged residual error
reduction factor
(log scale) # of iter.

number of cores (log scale)

0.00774 9

((((ÃÃÃÃ""""
!!!!

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦
◦◦

+++++++++++++++++++++++++++++++++++++++++++++

¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦
¦¦¦¦

(b) The PGMRES with a multigrid preconditioner using a local
Gauss-Seidel iteration as a smoother.

Figure 15: The averaged residual error reduction factor as a function of the
number of cores used in the parallel run for the domain Halc8, for symbols
please see text. 38



levels. The combination of finest level with the number of levels is denoted
by {finest level}–{number of levels}, i.e., 12− 8 means that the finest level
is 12 and the number of levels is 8. The results for the domains FSQc8 and
Halc8 are shown in Fig. 14 and Fig. 15 where we distinct between the cases:
12− 8 (solid), 13− 8 (◦) and 14− 8 (+) and 14− 9 (¦).

The graphs show that the averaged residual error reduction factor does
not change much as the number of cores increases. Hence, we conclude
that the efficiency of the local Gauss-Seidel iteration as a smoother in the
multigrid method is not significantly reduced by the parallel distribution on
many cores.

6.3 The handling of the Neumann boundary condition of the
inner empty space

In the following we discretize the Neumann boundary condition for different
inner empty spaces. As standard test case we define the domain Hall1, a
square domain (0.0, 4.0)×(0.0, 4.0) with an inner empty space of (1.0, 3.0)×
(1.0, 3.0) which is aligned with all coarser grids of the multigrid V-cycle. In
addition, we define on the same square domain (0.0, 4.0)×(0.0, 4.0) different
inner empty spaces which are slightly larger or smaller than the standard
case;

- DomainI9: (0.9921875, 3.0078125)× (0.9921875, 3.0078125)

- DomainI8: (0.984375, 3.015625)× (0.984375, 3.015625)

- DomainO9: (1.0078125, 2.9921875)× (1.0078125, 2.9921875)

- DomainO8: (1.015625, 2.984375)× (1.015625, 2.984375)

As a result the inner boundary lines of DomainI9 and DomainO9 are
aligned with level 9 or higher and the inner boundary lines of DomainI8 and
DomainO8 with level 8 or higher. For even smaller levels the alignment gets
lost.

In Fig. 16 we plot the results for the domains Hall1 (a) and DomainI9 (b)
for different finest levels 10 (blue), 11 (red), and 12 (black) and for the
following schemes: MGJA (solid), MGGS (circles), GMJA (crosses), and
GMGS (diamonds). For case DomainI9 the last level with alignment of the
inner empty space is marked by a vertical line at level 9 in Fig. 16 (b). The
results are shown as a function of the lowest level on which the problem is
solved (to high precision) with the GMRES method.

39



10 9 8 7 6 5

Averaged residual error
reduction factor
(log scale) # of iter.

lowest level

0.037 7

0.100 10

0.316 20

»»»»((((((((((((

◦◦◦◦
◦◦◦◦◦

◦◦◦
◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

◦◦◦◦◦

++++
++++++++++++++

+++++
+++++

+++
+++

¦¦¦¦¦¦¦¦
¦¦¦
¦¦¦
¦¦¦¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦¦

ÃÃÃÃ((((((((((((

◦◦◦◦◦◦
◦◦◦◦◦

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦
++++

+++++++++++++
+++++

+++
++

¦¦¦
¦¦¦
¦¦¦¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦
¦¦¦

ÃÃÃÃ((((((((

◦◦◦◦◦◦◦◦
◦◦◦◦

◦◦◦◦◦◦◦
++++++++++

+++++
+++

++

¦¦¦¦¦¦¦¦¦¦¦¦¦¦
¦¦¦¦¦ MGJA

◦◦◦◦ GMJA
++++ MGGS
¦¦¦¦ GMGS

(a) Case Hall1

10 9 8 7 6 5

Averaged residual error
reduction factor
(log scale) # of iter.

lowest level

0.037 7

0.100 10

0.316 20

0.464 30

»»»»((((¡¡¡¡
,,,,

©©©©

◦◦◦◦
◦◦◦◦◦◦◦

◦◦◦◦◦
◦◦◦
◦◦◦◦
◦◦◦
◦◦◦◦◦

◦◦◦◦
◦

++++
+++++++++++

++
++

++
+++

++
++

++
++++

+++
+

¦¦¦¦¦¦¦¦¦
¦¦¦
¦¦¦¦
¦¦¦
¦¦¦¦
¦¦
¦¦
¦¦
¦¦
¦¦¦¦¦¦¦¦

ÃÃÃÃ¡
¡

¡
¡

,,,,
©©©©

◦◦◦◦
◦◦◦◦◦

◦◦◦
◦◦◦
◦◦◦◦
◦◦◦
◦◦◦◦◦

◦◦◦◦

+++++
++++

++
++
++
+++
++

++
++

+++
+++

+++

¦¦¦
¦¦¦
¦¦¦¦
¦¦¦
¦¦¦¦
¦¦
¦¦
¦¦
¦¦
¦¦¦¦¦¦¦¦

%
%

%
%

,,,,
©©©©

◦◦◦
◦◦◦
◦◦◦◦
◦◦◦
◦◦◦
◦◦◦◦◦◦

◦◦

++
++
++
++
+++
++

++
++

+++
+++

+++

¦¦¦
¦¦¦
¦¦¦¦
¦¦
¦¦
¦¦
¦¦
¦¦¦¦¦¦¦

¦

Finest level 12
Finest level 11
Finest level 10

(b) Case DomainI9

Figure 16: The averaged residual error reduction factor and the correspond-
ing number of iterations of the multigrid method as a solver and as a precon-
ditioner for the PGMRES method with Jacobi and Gauss-Seidel smoothers
with a first order approximation for the Neumann boundary condition of
the inner empty space. 40



10 9 8 7 6 5

Averaged residual error
reduction factor
(log scale)

lowest level
(a) DomainI9

0.037

0.100

0.316

0.464

»»»(((((((((

◦◦◦◦
◦◦◦◦◦

◦◦◦◦
◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

◦◦◦

++++
++++++++++++++

++++++
+++++

+++
++

¦¦¦¦¦¦¦¦
¦¦¦
¦¦¦
¦¦¦¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦¦

»»»(((¡
¡

¡
¡

¡
¡

©©©

◦◦◦◦
◦◦◦◦◦◦◦

◦◦◦◦◦
◦◦◦
◦◦◦◦
◦◦◦◦

◦◦◦◦◦
◦◦◦◦

++++
+++++++++++

++
++
++
+++
++
++
++
++++

+++
+

¦¦¦¦¦¦¦¦¦
¦¦¦
¦¦¦¦
¦¦¦
¦¦¦¦
¦¦¦
¦¦¦
¦¦¦
¦¦¦¦¦¦¦

10 9 8 7 6 5

# of iter.

lowest level
(b) DomainI8

7

10

20

30

»»»(((((((((

◦◦◦◦
◦◦◦◦◦

◦◦◦◦
◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

◦◦◦

++++
++++++++++++++

++++++
+++++

+++
++

¦¦¦¦¦¦¦¦
¦¦¦
¦¦¦
¦¦¦¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦¦

»»»((((((¡
¡

¡
,

,
,

◦◦◦◦
◦◦◦◦◦◦◦◦

◦◦◦◦◦◦◦
◦◦◦◦◦

◦◦◦◦◦
◦◦◦◦

◦◦

++++
++++++++++++++

++++
++
++
++
+++
++
++
++
+

¦¦¦
¦¦¦
¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦

¦¦¦¦
¦¦¦¦
¦¦¦
¦¦¦

10 9 8 7 6 5

Averaged residual error
reduction factor
(log scale)

lowest level
(c) DomainO9

0.037

0.100

0.316

»»»(((((((((

◦◦◦◦
◦◦◦◦◦

◦◦◦◦
◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

◦◦◦

++++
++++++++++++++

++++++
+++++

+++
++

¦¦¦¦¦¦¦¦
¦¦¦
¦¦¦
¦¦¦¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦¦

»»»(((((((((!!!

◦◦◦◦
◦◦◦◦◦◦◦◦

◦◦◦◦◦◦◦◦◦
◦◦◦◦◦◦◦◦◦

◦◦◦

++++
++++++++++++++

++++
+++

++++
+++

+++

¦¦¦
¦¦¦
¦¦¦¦¦¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦
¦¦¦¦¦¦¦¦

¦

10 9 8 7 6 5

# of iter.

lowest level
(d) DomainO8

7

10

20

»»»(((((((((

◦◦◦◦
◦◦◦◦◦

◦◦◦◦
◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

◦◦◦

++++
++++++++++++++

++++++
+++++

+++
++

¦¦¦¦¦¦¦¦
¦¦¦
¦¦¦
¦¦¦¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦¦

»»»((((((((((((

◦◦◦◦
◦◦◦◦◦

◦◦◦◦
◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

++++
++++++++++++++

+++++
+++

++++
+++

+

¦¦¦¦
¦¦¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦¦
¦¦¦¦¦¦¦¦

¦

MGJA ◦◦◦◦GMJA ++++MGGS ¦¦¦¦GMGS Reference in red

Figure 17: The averaged residual error reduction factor and the correspond-
ing number of iterations of the multigrid method as a solver and as a precon-
ditioner for the PGMRES method with Jacobi and Gauss-Seidel smoothers
with a first order approximation for the Neumann boundary condition of
the inner empty space. 41



As expected the performance of the Jacobi smoother is not as good as
the performance of the Gauss-Seidel smoother. Also it is clearly proven
that the averaged residual error reduction factor of the PGMRES is smaller
than for the multigrid solver. We also see that the averaged residual error
reduction factor gets larger the larger the total number of levels in the V-
cycle becomes. This is due to the fact that the problem is solved on the
lowest level. So the smaller the number of levels in the multigrid V -cycle
becomes the faster the multigrid method converges for the price of a more
costly low level solver.

In addition, Fig. 16 shows that for both cases, Hall1 (a) and DomainI9
(b), the results only slightly depend on the highest level on which the original
problem has been discretized. Hence, for the following numerical tests we
will usually restrict ourselves to the case with a finest level of 12.

Next, we show in Fig. 17 the results of the test cases with a non-aligned
inner empty space plotted in black and compare them with the results of
the aligned reference case Hall1 plotted in red. The graphs in Fig. 17 show
for the DomainI9 (a) and DomainI8 (b) that the averaged residual error
reduction factor significantly increases compared to the aligned case when
the lowest level becomes smaller by one or more levels than the last aligned
level of the inner empty space. However, such an effect can not be found
for the results of DomainO9 (c) and DomainO8 (d). Instead the efficiency
of the averaged residual error reduction factor only slightly degrades.

To understand the different behavior of the DomainI and DomainO test
cases we study the cases DomainI9 and DomainO9 in more detail. In Fig. 18
we show the relative position of the real boundary in one dimension in
relation to the adjacent grid points of the eighth (vertical bar), seventh
(bullet) and sixth level (open circle) for DomainI9 (a) and DomainO9 (b).
For both domains the real boundary is still aligned with the grid on level 9.
However, for DomainI9 the relative distance between the position of the real
boundary and the nearest grid point becomes larger with each decreasing
grid level (points A, B, and C). Instead, for DomainO9 the distance keeps
the same (point D). It follows that the approximation of the inner boundary
on a certain lower grid level is better the closer it is to the next grid point.

In the hope to further improve the efficiency of the averaged residual
error reduction factor for the non-aligned cases, DomainI9 and DomainI8,
we implement a second order scheme for the Neumann boundary condition
as explained in Sec. 4.1. We compare the averaged residual error reduc-
tion factor of this second order scheme with the first order scheme for the
case DomainI9 in Fig. 19. Again we show the results together with the
results for the reference case Hall1 and take results for all four schemes un-

42



• • • • •© © ©

• • • • •© © ©×

×

↑

↑

real boundary

real boundary

ABC

D

(a) Case DomainI9

(b) Case DomainO9

in the inner empty space

in the inner empty space

Figure 18: Location of the non-aligned inner boundary on the lower level
(×: real boundary points on level 9, |: level 8 nodes, •: level 7 nodes, ©:
level 6 nodes).

der consideration. Especially for the multigrid schemes MGJA and MGGS
a clear improvement can be noted. The averaged residual error reduction
factor starts to degrade now when the lowest level becomes smaller than 7.
In addition, the degradation for the non-aligned cases seems to be not as
pronounced compared to the aligned case for decreasing lowest levels.

6.4 The effect of the internal conducting structure

In this section we consider the effect of the position of the internal conducting
structure. For our test case the internal conducting structure is assumed as
being small compared to the full domain and being located somewhere inside
the domain. The different meshes of the V-cycle are generated from the
finest mesh on which we want to solve the problem and the properties of the
nodes on coarser meshes are inherited from the finest mesh. Depending on
the position and the size of the internal conducting structure, the structure
might not match exactly the nodes or might even disappear within the
resolution of certain coarser meshes. In Fig. 20, we illustrate the matching
and non-matching of the internal conducting area on a coarser grid. The
visibility of the conducting area to the multigrid algorithm is given by its
projection on the nodes of the grids. In Fig. 21 we mark the nodes which are
within the conducting area for different grids of the V-cycle. We distinguish

43



Averaged residual error
reduction factor
(log scale)

# of iter.

0.1467 12
0.1701 13
0.1931 14

0.2371 16
0.2783 18

»»»(((((((((

++++++++++++++
++

++
++

+++
++

++
++

++++++++

◦◦◦◦◦◦◦
◦◦◦◦◦◦◦◦◦◦◦◦

◦◦◦◦
◦◦◦◦◦◦

◦◦◦

(a) MGJA algorithm

0.0562 8

0.0774 9

0.1000 10

0.1233 11

"""#
#

#
©©©

+++++++++++++++
++

++
+++

++
++

++
++++++++

◦◦◦
◦◦◦

◦◦◦◦◦◦◦◦
◦◦◦◦

◦◦◦◦◦
◦◦◦◦◦◦◦◦◦◦

(b) GMJA algorithm

0.0774 9

0.1233 11

0.1701 13

0.2154 15

!!!(((³³³³³³"""

+++++++++++++++
++

++
++

+++
++

++
++

++++++++

◦◦◦◦◦
◦◦◦◦◦◦◦◦◦

◦◦◦◦◦◦
◦◦◦

◦◦◦◦
◦◦◦
◦◦◦
◦

(c) MGGS algorithm

10 9 8 7 6 5
lowest level

0.0373 7

0.0562 8

0.0774 9

0.1000 10

(((¡
¡

¡
!!!»»»

++++++++
++

++
+++

++
++

++
+++
++
++
++
++
+++++++

◦◦◦◦◦◦◦◦◦
◦◦◦
◦◦◦◦
◦◦◦
◦◦◦
◦◦◦◦

◦◦◦
◦◦◦◦◦◦◦

(d) GMGS algorithm

Figure 19: The averaged residual error reduction factor and the correspond-
ing number of iterations for different iterative solvers with a first and sec-
ond order approximation for the Neumann boundary condition of the inner
empty space (solid line: domain Hall1, +: the first order scheme on Do-
mainI9, ◦: the second order scheme on DomainI9).

44



(a) Unmatched area (b) Matched area

Figure 20: The positioning of the internal conducting area (¥: Internal
structure (conductor), line: coarse mesh, dotted line: fine mesh).

between the cases of a matching (a) and non-matching area (b).
Similarly to the tests with different inner empty spaces in Sec. 6.3 we

define now different test cases to measure the performance of the multi-
grid algorithm for an aligned and non-aligned internal conducting area. We
consider a square domain (0.0, 4.0) × (0.0, 4.0) with no inner empty space
which includes the internal conducting area. The size of the internal con-
ducting area keeps constant but its position changes to test the effect of
the alignment. Our reference test case has an inner conducting area of
(0.468745, 0.531255)× (1.874995, 2.125005) denoted by C0. Case C0 is cen-
tered around the coarsest node point and still aligned on level 5 in the
y-direction. As the conducting area is four times more elongated in the y-
direction than in the x-direction the alignment is lost already below level 7 in
the x-direction. For additional test cases, we move the internal conducting
structure only along the x-direction by the following values:

- C1: 0.03125, aligned on level 6

- C2: 0.0156250, aligned on level 8

- C3: 0.0078125, aligned on level 9

- C4: 0.00390625, aligned on level 10

- C5: 0.001953125, aligned on level 11

45



••
••
••
••
•

••
••
••
••
•

••
••
••
••
•

••
••
••
••
•

••
••
••
••
•

•
•
•
•

•
•
•
•

•

•

(a) Unmatched area

••
••
••
••
•

••
••
••
••
•

••
••
••
••
•

••
••
••
••
•

••
••
••
••
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•

•

•

•

•

•

(b) Matched area

Figure 21: Effect of the internal conducting area on different multigrid levels
(•: nodes covered by the internal conducting area).

46



In Fig. 22 we plot the results for the case C0 (a) and case C3 (b) for
different finest levels 10 (blue), 11 (red), and 12 (black) and for the follow-
ing schemes: MGJA (solid), MGGS (circles), GMJA (crosses), and GMGS
(diamonds). The results are shown as a function of the lowest level on which
the problem is solved (to high precision) with the GMRES method. We only
show results which converge within 30 iterations to our required precision.
This effects in particular the MGJA solver for case C3 in Fig. 22 (b) which
has difficulties to converge within 30 iterations.

In agreement with Sec. 6.3 the results only slightly depend on the highest
level on which the original problem has been discretized. Also the internal
conducting area has hardly any effect on the convergence rate of the solvers
as long as it is aligned to the grids of the multigrid levels. This can be clearly
seen in Fig. 22 (b) where the averaged residual error reduction factor makes a
jump to larger values when decreasing the lowest level from 9 to 8 and hence
loosing the alignment in the x-direction. For the multigrid solvers MGJA
and MGGS it further degrades significantly when extending the V-cycle to
even smaller lowest levels. However, this effect is much less pronounced for
the GMJA and GMGS algorithms where the multigrid method is used as a
preconditioner.

To see the effect of the positioning of the internal conducting area in
more detail, we scan now through the results of our test cases C0 to C5 for
a full square domain without an inner empty space and a finest level of 12.
Again, the averaged residual error reduction factor is plotted as a function of
the lowest level. In Fig. 23 the results for a Jacobi smoother and in Fig. 24
the results for a Gauss-Seidel smoother are collected. A distinction between
the results for the multigrid method as a solver (a) and as a preconditioner
for the PGMRES (b) is made. For each graph, we plot a reference case
denoted by NoC which lacks the internal conducting area.

From the Figs. 23 and 24, we can deduce that the multigrid method as a
solver and the PGMRES method with a multigrid preconditioner have best
convergence properties when the inner conducting area is absent. As already
mentioned in Sec. 4 this is caused by the so-called corner singularities of the
conducting area which affect the performance of the multigrid method. Next
best results are achieved when the conducting area is aligned with as many
grids of the different multigrid levels as possible. The deeper such an align-
ment is achieved within the V-cycle the better are the results. Otherwise
the results degrade (significantly) when there are lower levels with no such
an alignment. This becomes plausible when one looks again at Fig. 21. If
there is no alignment for all levels of the V-cycle from a certain coarser level
on, the internal conducting area is mapped only onto one node point, i.e.,

47



9 8 7 6 5 9 8 7 6 5

Averaged residual error
reduction factor
(log scale) # of iter.

lowest level lowest level
(a) C0 (b) C3

0.100 10

0.215 15

0.316 20

0.464 30

((((((

◦◦◦◦
◦◦◦◦◦◦◦◦◦

◦◦◦◦◦◦◦◦++++++++++++++++++++

¦¦¦¦
¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦¦¦

ÃÃÃ·
·
·

◦◦
◦◦
◦◦
◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦++++++++
++
++
++
+++++++++++

¦¦
¦¦
¦¦
¦¦¦¦
¦¦¦¦¦¦¦¦¦¦¦¦¦¦

(((

◦◦◦◦◦◦
◦◦◦◦◦◦◦◦◦◦

+++++++++++++++

¦¦¦¦¦¦
¦¦¦¦

¦¦¦¦¦¦

­­
­

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦
++
++
++
++
+++++++++++

¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦◦◦◦◦
◦◦◦◦◦◦◦

++++++++++

¦¦¦
¦¦¦¦¦¦¦¦

◦◦◦◦◦◦◦◦◦◦

++++++++++

¦¦¦¦¦¦¦¦¦¦

MGJA
◦◦◦◦GMJA
++++MGGS
¦¦¦¦GMGS

Finest level 12
Finest level 11
Finest level 10

Figure 22: The averaged residual error reduction factor of four different
solvers for the full square domain with the inner conducting areas C0 and
C3.

48



9 8 7 6 5

Averaged residual error
reduction factor
(log scale) # of iter.

lowest level

0.215 15

0.316 20

0.464 30

(((((

◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦
◦◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦

2222222
2
2
2
2
2

4444444444444
44
44
44
444444444

• • • • • •• • • • •
•• • • • • •• • • • • • NoC

◦◦◦◦ C0
• • • C1
4444 C2
222 C3
¦ ¦ ¦ C4
++++ C5

(a) Multigrid method as a solver

9 8 7 6 5

Averaged residual error
reduction factor
(log scale) # of iter.

lowest level

0.037 7

0.100 10

0.215 15

(((((»»»»»(((((
◦ ◦ ◦ ◦ ◦

◦◦ ◦ ◦ ◦ ◦ ◦◦◦◦
◦◦◦◦◦ ◦ ◦ ◦ ◦ ◦

++++++++++++++++++++++++¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦

2
2
2
2
2
2
2
2222222222222222222

4444
44444

4444
4444444444444

••••
•••• • • •

• •• • • • • •• •
• • • •

NoC
◦◦◦◦ C0
• • • C1
4444 C2
222 C3
¦ ¦ ¦ C4
++++ C5

(b) PGMRES with multigrid preconditioner

Figure 23: The averaged residual error reduction factor and the correspond-
ing number of iterations as a function of the lowest level for an internal
conducting area having the slightly shifted positions of the cases C0–C5.
A reference case without an internal conducting area is marked as NoC. A
Jacobi smoother has been used for a multigrid method with a finest level
of 12.

49



9 8 7 6 5

Averaged residual error
reduction factor
(log scale) # of iter.

lowest level

0.100 10

0.215 15

0.316 20

0.464 30

(((((ÃÃÃÃÃ(((((»»»»»◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦
◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦

22222222
2
2
2
2
2
2
2
2
2222222222222

4444444444444
44
44
44
444444444

• • • • • •• • •
• • •• • • • • •• • • • • •

NoC
◦◦◦◦ C0
• • • C1
4444 C2
222 C3
¦ ¦ ¦ C4
++++ C5

(a) The multigrid method as a solver

9 8 7 6 5

Averaged residual error
reduction factor
(log scale) # of iter.

lowest level

0.037 7

0.100 10

0.215 15

©©©©©
(((((©©©©©

◦ ◦ ◦ ◦ ◦
◦◦ ◦ ◦ ◦ ◦ ◦◦

◦◦◦◦
◦◦◦ ◦ ◦ ◦ ◦ ◦

++++++++++++++++++++++++¦ ¦ ¦ ¦ ¦
¦¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦

2
2
2
2
2
2
2
2
22222222222222222222

44444
4444

444
44444444444444

• • • • •
•• • • • • •• • • • • •• • • • •

•

NoC
◦◦◦◦ C0
• • • C1
4444 C2
222 C3
¦ ¦ ¦ C4
++++ C5

(b) PGMRES with multigrid preconditioner

Figure 24: The averaged residual error reduction factor and the correspond-
ing number of iterations as a function of the lowest level for an internal
conducting area having the slightly shifted positions of the cases C0–C5.
A reference case without an internal conducting area is marked as NoC. A
Gauss-Seidel smoother has been used for a multigrid method with a finest
level of 12.

50



its structure can not be resolved any longer by the grid. This seems to be no
problem as long as the structure is symmetrically positioned around such a
node point. However, if the structure is not aligned with the grid the forma-
tion of its misalignment gets lost and it will not be correctly treated on the
grid of the coarser levels. In the worst case this can lead to a non converging
multigrid solver result. However, this effect is much more pronounced for
the multigrid method as a solver. Hence, in such cases the multigrid method
should only be used as a preconditioner to speed up the convergence rate of
the PGMRES method.

6.5 The effect of the size of the inner empty space and the
inner conducting structure

Now, we consider the full problem with an inner empty space and with an
inner conducting structure.

First, we investigate the effect of the size of the inner empty space on
the performance of the solvers. To do this, we select two domains, one is
Ha1 which has the inner empty space (1.0, 3.0) × (1.0, 3.0) and the other
is HaH which has a larger inner empty space (0.5, 3.5) × (0.5, 3.5). For
the inner conducting structure, we choose the same size as in the previ-
ous section but with a different positioning for the cases Ha1 and HaH,
i.e., (0.468745, 0.531255) × (1.874995, 2.125005) for the Ha1 domain and
(0.218745, 0.281255) × (1.874995, 2.125005) for the HaH domain. We call
this inner conducting structure case c7 because it is aligned on the seventh
level in the x-direction. In Fig. 25 we compare the results of the cases Ha1
and HaH with the FSQ case where the inner empty space is absent. It can
be clearly seen that the averaged residual error reduction factor is hardly
influenced by the presence and size of the inner empty space as long as it is
aligned with the grid.

Next, we investigate the effect of the size of the inner conducting struc-
ture which is reduced by a factor of two between the cases c7, c8 and
c9. In addition to case c7 we define case c8 with (0.4843745, 0.5156255) ×
(1.937495, 2.062505) being aligned on the eighth level and case c9 with
(0.49218745, 0.50781255)× (1.968745, 2.0312505) being aligned on the ninth
level.

The results for all three inner conducting structures combined with all
three domains (FSQ, Ha1, and HaH) do not show much difference. As an
example we just show the averaged residual reduction factor on the Ha1
domain depending on the cases c7, c8 and c9 in Fig. 26. The difference
one sees between results is a matter of two effects: the varying size of the

51



8 7 6 5

Averaged residual error
reduction factor
(log scale)

coarsest level

0.056

0.100

0.316 (((((

◦ ◦ ◦ ◦ ◦ ◦◦◦
◦◦◦

◦◦◦ ◦ ◦ ◦ ◦ ◦++++++++++++++++++

¦ ¦ ¦ ¦ ¦
¦¦¦¦

¦¦¦
¦¦ ¦ ¦ ¦ ¦ ¦

(((((

◦ ◦ ◦ ◦ ◦ ◦◦◦
◦◦◦

◦◦◦ ◦ ◦ ◦ ◦ ◦
++++++++++++++++++

¦ ¦ ¦ ¦ ¦ ¦¦
¦¦¦

¦¦¦¦ ¦ ¦ ¦ ¦ ¦

(((((

◦ ◦ ◦ ◦ ◦ ◦◦◦
◦◦◦

◦◦◦ ◦ ◦ ◦ ◦ ◦++++++++++++++++++

¦ ¦ ¦ ¦ ¦ ¦¦¦
¦¦¦

¦¦¦ ¦ ¦ ¦
¦ ¦

MGJA
◦◦◦◦GMJA
++++MGGS
¦¦¦¦GMGS

FSQc7
Ha1c7
HaHc7

Figure 25: The averaged residual error reduction factor for different iterative
solvers as a function of the lowest level for three different domains (case FSQ
without and cases Ha1 and HaH with an inner empty space) with an internal
conducting structure aligned at the seventh level (for details please see text).
The finest grid level is 12.

52



c7 c8 c9

Averaged residual error
reduction factor
(log scale)

inner conducting structure

0.056

0.100

0.316 hhhhhh

hhhhhh³³³³³³

©©©©©©

• • •

◦ ◦
◦

+ + +

¦

¦ ¦

• MGJA
◦ GMJA
+ MGGS
¦ GMGS

Figure 26: The averaged residual error reduction factor for different iterative
solvers depending on three internal conducting structures of different size
(reduced by a factor of two between the cases c7, c8 and c9) with a Ha1
domain (for details please see text). The finest grid level is level 12 and the
lowest level 5.

inner conducting structure and the alignment on different levels. The re-
sults differ in a range which can be already expected from the alignment on
different levels as presented in Sec. 6.4. Hence, the actual size of the inner
conducting structures seems to have a very small influence on the results.
This is in agreement with the results for a varying size of the inner empty
space discussed before.

53



7 The scaling property on HPC-FF

In this section, we consider the scaling properties of our multigrid algorithm
for solving our elliptic problem on a rectangular domain with an internal
conducting structure and an inner empty space.

If the algorithm is executed on a parallel machine, the scaling behavior
of the algorithm according to the number of cores being used is of key
interest. Here we distinct between the strong and weak scaling properties.
To measure the strong scaling property a fixed problem size is executed on an
increasing number of cores. Instead the weak scaling property investigates
the behavior of a program when the work dedicated to each core, e.g. the
number of operations, is kept the same. Hence, the overall problem size
scales with the number of cores.

However, for the multigrid algorithm it is nearly impossible to fix the
number of operations per core while increasing the total problem size. If we
add, e.g., for a 2-dim problem an additional level in the multigrid method,
then the number of degrees of freedom (DoF) of the finest level becomes four
times that of the previous one. In such a case, the total number of levels
increases by one as long as the lowest level is kept constant. This means
that the total number of operations will increase by more than a factor of
four. Also incrementing the lowest level by one does not help as the new
lowest level would have a four times larger number of DoF compared to the
previous one. As a consequence, the number of operations needed for the
solver on the lowest level increases also by more than a factor of four. In
both cases, the total number of operations would be more than four times
larger than for the original one. Thus, the number of operations per core
would always (slightly) increase and not be fixed.

Instead we will define a semi-weak scaling by fixing the number of DoF of
the finest level on each core. As a side-effect, the number of operations per
core and with it the execution time will (slightly) increase with the number
of cores even if there is no communication overhead.

7.1 Algorithmic scaling

To classify the efficiency of a given algorithm, as e.g. an iterative solver, it is
of interest to know the number of operations needed to calculate a result with
a given precision (error). Especially the behavior of the solver in relation
to the number of unknowns, the so-called algorithmic scaling, is of interest.
For many iterative solvers including CGM, GMRES, the Jacobi iteration,
and Gauss-Seidel iteration the number of operations in each iteration is

54



almost proportional to the number of DoF. So the efficiency of an iterative
solver can be estimated by the required number of iterations. We summarize
the required storage and number of operations (flops) for some well-known
solvers in Table 2.

Method Storage Flops # of iterations
Gauss-Elimination (banded) n5/3 n7/3 Not applicable

Gauss-Seidel Iteration n n5/3 log n n2/3 log n

Optimal SOR n n4/3 log n n1/3 log n

Conjugate Gradient Method n n3.5/3 log n n1/6 log n

Full Multigrid Method n n log n log n

Table 2: Order of required storage and flops for linear solvers.

It can be seen that the multigrid method has a very good algorithmic
scaling property because the required number of iterations to achieve a given
residual error increases according to the number of levels (log of the number
of DoF) as already mentioned in section 3.1

To prove the predicted multigrid scaling property for our model problem,
we consider the Ha1 domain with an inner conducting structure defined as
in case c9 (see previous section). We choose level 5 with a mesh size of
h = 0.125 as the lowest level. Depending on the finest level of the test
problem, which varies from 10 (h = 0.00390625) to 13 (h = 0.00048828125),
the number of DoF is listed in Table 3.

In Fig. 27 one can see the averaged residual error reduction factor and
the corresponding number of iterations depending on the finest level of the
different test cases. For all solvers under consideration the number of itera-
tions increases only slightly as the number of levels increases. Thus, the good
algorithmic scaling property of the multigrid algorithm has been confirmed
for our problem.

Problem Level 10 Level 11 Level 12 Level 13
Ha1c9 785,323 3,143,383 12,577,711 50,319,199

Table 3: The number of DoF of the different test problems.

55



10 11 12 13

Averaged residual error
reduction factor
(log scale)

finest level

# of iter.

0.056 8

0.100 10

0.316 20

ÃÃÃÃÃ»»»»»(((((

◦◦◦◦
◦◦◦◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦

◦++++++++++++++++++

¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦
¦ ¦¦ ¦ ¦ ¦ ¦ ¦

MGJA
◦◦◦◦GMJA
++++MGGS
¦¦¦¦GMGS

Figure 27: The averaged residual error reduction factor and the correspond-
ing number of iterations for four different solvers depending on the finest
level for case Ha1c9 with an inner empty space and an internal conducting
structure. The lowest level 5 is kept constant.

7.2 Strong scaling

In this section we discuss the strong scaling property of the multigrid method
on the HPC-FF computer. As test problems, we choose the following three
cases, FSQ without and cases Ha1 and HaH with an inner empty space. In
addition, we choose for all cases an inner conducting structure c8 which is
aligned on the eighth level in the x-direction. The measured execution times
are done under the assumption that the initial residual error has diminished
by a factor of 10−9 until the iterative process is stopped. To improve statis-
tics the same problem is solved 200 times to derive an averaged solution
time. Especially, for the multigrid solvers the required number of iterations
is determined just once at the first run. In subsequent runs the calculation
of the residual error is omitted.

For each domain, we consider different finest levels, e.g. the levels 11,

56



12, and 13 in combination with a total number of levels, as e.g. 7, 8, and 9
levels. The combination of finest level with the number of levels is denoted
by {finest level}–{number of levels}, i.e., 12− 8 means that the finest level
is 12 and the number of levels is 8.

Our program is affected by two main limitations. One is related with
the memory and the size of the problem, i.e., a certain number of cores is
necessary to provide the needed amount of memory. Hence, the larger the
highest level is, the higher will be the minimal required number of cores.
Another limitation is related to the lowest level, i.e., the given number of
cores has to be less than or equal to the number of DoF of the lowest
level. The latter limitation could be removed with a special treatment as
proposed in [19]. However, we will not follow this idea because it would
result in certain performance penalties.

For the problem FSQc8, we choose the cases 11− 7, 12− 8, and 13− 9.
Accordingly, all these cases have the same lowest level and therefore they
all would scale to the same maximum number of cores. However, we stop
displaying results when the solution time starts increasing with increasing
number of cores. In addition to the solution times as a function of cores we
also display the corresponding speed-up curves normalized to the solution
time of the minimum number of cores in the lower part of the Figs. 28, 29,
and 30. For a better comparison we plot the speed-up curves together with
a solid line for the ideal strong scaling.

Each domain is divided into n = nx ∗ ny sub-domains, i.e. nx in x-
direction and ny in y-direction. We increase the number of sub-domains n
by alternate doubling of the number of cores in each direction, i.e., start
with nx ∗ ny then (2nx) ∗ ny, (2nx) ∗ (2ny), etc.

The results for the domain FSQc8 are shown in Fig. 28. As usual
we distinct between the following solvers: a multigrid solver with a Ja-
cobi smoother (MGJA) (solid line), a multigrid solver with a Gauss-Seidel
smoother (MGGS) (crosses), the PGMRES method with a multigrid pre-
conditioner using the Jacobi smoother (GMJA) (circles), or the PGMRES
method with a multigrid preconditioner using the Gauss-Seidel smoother
(GMGS) (diamonds). The larger the number of DoF is, the higher the
multigrid solvers scale. The fastest execution times are reached at 32 cores
for case 11−7, 64 cores for case 12−8, and 128 cores for case 13−9. Thereby
the particular solver is only of minor importance. It is obvious again that
the multigrid is especially suited for large problem sizes.

The cases Ha1c8 and HaHc8 differ from case FSQc8 in the sense that
they have an inner empty space. If some cores are mapped onto the inner
empty space they are forced to idle. This means e.g. for case Ha1c8 that we

57



2 4 8 16 32 64 128 256 512

time in seconds
(log scale)

the number of cores (log scale)

2

5

10

20

aaaaa
QQQQQXXXXXhhhhh

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦

++++++++++++++++++++++++++++++++

¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦

QQQQQbbbbbHHHHHXXXXX(((((´́
´́

´

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦ ◦ ◦ ◦ ◦ ◦◦◦
◦◦◦

◦◦

++++++++++++++++++++++++++++++++++++++++++

¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦¦¦
¦¦¦

¦¦

bbbbbhhhhh»»»»»!!!!!
◦◦◦◦◦◦◦◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦◦

◦◦◦◦
◦◦

++++++++++++++++++++++++++¦¦¦¦¦¦¦¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦¦¦
¦¦¦

¦¦

MGJA ◦◦◦◦GMJA ++++MGGS ¦¦¦¦GMGS
11-7 12-8 13-9

(a) The solution times

2 4 8 16 32 64 128 256 512

Speed-up
(log scale)

the number of cores (log scale)

2

4

1

8

½
½

½
½

½
½

½
½

½
½

½
½

½

½
½

½
½

½
½

½
½

½
½

½
½

½

½
½

½
½

½
½

½
½

½
½

½
½

½

!!!!!´́
´́

´
»»»»»(((((

◦◦◦◦◦◦
◦◦◦◦◦◦

◦◦◦◦
◦◦◦◦

◦◦◦◦◦◦◦
◦◦◦◦◦◦◦◦

◦◦◦◦◦◦◦◦◦◦◦◦◦◦

++++
++++

++++
+++

+++
+++++

+++++++++
++++++++++++++++

¦¦¦¦¦¦
¦¦¦¦¦¦

¦¦¦¦
¦¦¦¦

¦¦¦¦¦¦¦¦
¦¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦¦¦¦

½½½½½
"""""©©©©©»»»»»hhhhhbbbbb

◦◦◦◦
◦◦◦◦

◦◦◦◦◦
◦◦◦◦

◦◦◦◦
◦◦◦◦◦

◦◦◦◦
◦◦◦◦◦◦◦

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

+++
+++

+++
++++

+++
+++

+++++
++++

++++++
++++++++++++++++++++++++++

¦¦¦¦
¦¦¦¦

¦¦¦¦¦
¦¦¦¦

¦¦¦¦
¦¦¦¦¦¦

¦¦¦¦¦¦
¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦

"""""(((((XXXXXaaaaa◦◦◦◦
◦◦◦◦

◦◦◦◦◦◦◦
◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

+++
+++

+++
+++++++++++++++++++++++++++++¦¦¦¦¦

¦¦¦¦¦
¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦

MGJA ◦◦◦◦GMJA ++++MGGS ¦¦¦¦GMGS
11-7 12-8 13-9

(b) The speed-up

Figure 28: The solution times in seconds of the multigrid method as a solver
and as a preconditioner for the PGMRES method with Jacobi and Gauss-
Seidel smoothers as a function of the number of cores for domain FSQc8.
Results for the highest levels 11, 12, and 13 are shown for a lowest level of 5.
In the lower part (b) ideal scaling is depicted by a solid line.

58



4 8 12 24 48 96 192

time in seconds
(log scale)

number of cores (log scale)

2

5

1

10

20

50

aaaaaa
QQQQaaaaaaPPPPPPhhhhhh»»»»»»»

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦
◦◦◦◦◦

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++

++++
+++

¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦
¦¦¦¦¦

HHHHHHaaaaaa ((((((

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

++++++++++++++++++++++++++++++++++++++++++++++++++
++++

¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦

MGJA ◦◦◦◦◦GMJA +++++MGGS ¦¦¦¦¦GMGS
12-8 13-8

(a) The solution times

4 8 12 24 48 96 192

Speed-up
(log scale)

number of cores (log scale)

2

4

1

8

©©©©©©©©©©©©©©©©©©

©©©©©©©©©©©©©©©©©©

!!!!!!´́
´́

!!!!!!³³³³³³((((((XXXXXXX

◦◦◦◦◦◦
◦◦◦◦◦◦

◦◦◦◦◦
◦◦◦◦
◦◦◦◦◦◦

◦◦◦◦◦◦
◦◦◦◦◦◦◦

◦◦◦◦◦◦◦
◦◦◦◦◦◦◦◦◦◦◦

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

++++
++++

++++
++++

+++
+++

+++++
++++

++++
+++++++

++++++
++++++++++++++++++++++++++++++

¦¦¦¦¦¦
¦¦¦¦¦¦

¦¦¦¦¦¦
¦¦¦¦
¦¦¦¦¦¦

¦¦¦¦¦¦
¦¦¦¦¦¦¦

¦¦¦¦¦¦
¦¦¦¦¦¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦

©©©©©©!!!!!! hhhhhh

◦◦◦◦◦
◦◦◦◦◦

◦◦◦◦◦◦
◦◦◦◦◦◦

◦◦◦◦◦◦
◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

++++
++++

++++
++++++

+++++
++++++

+++++++++++++++++++++++++

¦¦¦¦¦
¦¦¦¦¦

¦¦¦¦¦¦¦
¦¦¦¦¦¦

¦¦¦¦¦¦¦¦
¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦

MGJA ◦◦◦◦◦GMJA +++++MGGS ¦¦¦¦¦GMGS
12-8 13-8

(b) The speed-up

Figure 29: The solution times in seconds of the multigrid method as a solver
and as a preconditioner for the PGMRES method with Jacobi and Gauss-
Seidel smoothers as a function of the number of cores for domain Ha1c8.
Results for the highest levels 12 and 13 are shown for a lowest level of 5. In
the lower part (b) ideal scaling is depicted by a solid line.

59



4 8 12 20 28 56 112

time in seconds
(log scale)

number of cores (log scale)

2

5

1

10

20

50

aaaaaaa
QQQQaaaaa

llllXXXXXXX

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦

aaaaa
@

@
@aaaaaaaXXXXXXX

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

+++++++++++++++++++++++++++++++++++++++++++++++++

¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦

MGJA ◦◦◦◦GMJA ++++MGGS ¦¦¦¦GMGS
12-8 13-9

(a) The solution times

4 8 12 20 28 56 112

Speed-up
(log scale)

number of cores (log scale)

2

4

1

8

©©©©©©©©©©©©©©©©©©©©©©©©©

©©©©©©©©©©©©©©©©©©©

!!!!!!!""""!!!!!,
,

,
»»»»»»»

◦◦◦◦◦
◦◦◦◦◦

◦◦◦◦◦◦
◦◦◦◦
◦◦◦◦◦

◦◦◦◦◦
◦◦◦◦◦◦

◦◦◦
◦◦◦
◦◦◦◦◦◦◦

◦◦◦◦◦◦◦◦
◦◦◦◦◦◦◦◦◦◦◦◦◦◦

++++
++++

++++
+++++

+++
+++++

++++++
+++++++

++++++
++++

++++
++++++++++++++++

¦¦¦¦¦¦
¦¦¦¦¦¦

¦¦¦¦¦
¦¦¦¦

¦¦¦¦¦¦
¦¦¦¦¦¦

¦¦¦¦¦¦¦¦¦¦
¦¦¦¦¦

¦¦¦¦¦
¦¦¦¦¦¦¦¦¦¦¦¦¦

¦¦¦

!!!!!¡
¡

¡
!!!!!!!»»»»»»»

◦◦◦◦◦
◦◦◦◦◦

◦◦◦◦
◦◦◦
◦◦◦
◦◦◦◦◦◦

◦◦◦◦◦
◦◦◦◦◦◦◦

◦◦◦◦◦◦◦◦
◦◦◦

+++++
+++++

++++
+++

+++
+++++

++++
++++

+++++++
++++++

+++

¦¦¦¦¦
¦¦¦¦¦

¦¦¦¦
¦¦¦
¦¦¦
¦¦¦¦¦¦

¦¦¦¦¦
¦¦¦¦¦¦¦

¦¦¦¦¦¦¦¦
¦¦¦

MGJA ◦◦◦◦GMJA ++++MGGS ¦¦¦¦GMGS
12-8 13-9

(b) The speed-up

Figure 30: The solution times in seconds of the multigrid method as a solver
and as a preconditioner for the PGMRES method with Jacobi and Gauss-
Seidel smoothers as a function of the number of cores for domain HaHc8.
Results for the highest levels 12 and 13 are shown for a lowest level of 5. In
the lower part (b) ideal scaling is depicted by a solid line.

60



start with 4 cores then double to 8 cores but instead of doubling again to 16
cores we just use 12 cores. This is feasible as 4 cores are mapped onto the
inner empty space and hence are not needed. From 12 cores on we double
again the number of cores by refining the mesh either in x- or y-direction
but still excluding the cores being mapped onto the inner empty space. For
case HaHc8, which has a larger inner empty space relative to the size of the
domain, the sequence of feasible cores is 4, 8, 12, 20, 28 and then doubling of
the number of cores. Due to the limitation on the lowest level the maximum
usable number of cores is 512 for case Ha1c8 and 112 for case HaHc8.

The results for the domain Ha1c8 are shown in Fig. 29. The fastest
execution times are reached at 96 cores for the cases 12 − 8 and 13 − 9.
Correspondingly, the results for the domain HaHc8 are shown in Fig. 30.
Here, the fastest execution times are reached at 112 cores for the cases
12− 8 and 13− 9.

The scaling results for the domains Ha1c8 and HaHc8 are quite similar.
Of course, the execution time is longer for higher number of DoF. This is
correlated with an improvement of the scaling property for larger problem
sizes. Hence, the 13-9 cases have the better scaling property. If we com-
pare the scaling of the different solvers, we can see again that they scale
quite similar. However, the multigrid solver with a Gauss-Seidel smoother
(MGGS) has usually the fastest execution times. The existence and size of
the inner empty space has an impact on the scaling of the multigrid solver.
Efficient scaling to highest core numbers is achieved for the domain FSQc8
without an inner empty space followed by the domains HaHc8 and Ha1c8.

7.3 Semi-weak scaling

For testing the semi-weak scaling property we consider the case that the
number of DoF on the finest level is fixed per core while the number of
cores is increased. As mentioned before, the semi-weak scaling property
is the combination of the algorithmic scaling and the weak scaling. We
consider the domains Ha1c8 and HaHc8 including an inner empty space and
an internal conducting structure already used for the strong scaling in the
previous section.

For each problem we choose four different problem sizes per core which
consist of 262 144 DoF, 523 264 DoF, 1 048 576 DoF, and 2 095 104 DoF on
the finest level. To be precise, the number of DoF per core is not exactly the
same as some cores share parts of the inner conducting structure and thus
have to handle less number of DoF. As the inner conducting structure is
relatively small this affects only a small number of cores. Hence, the above

61



given number of DoF reflect the dominating case where the number of DoF
for each core is not influenced by the inner conducting structure.

To keep the work per core as constant as possible, we invoke an additional
level in the multigrid V-cycle when quadrupling the number of cores. As a
result, the mesh of the finest level will increase by a factor of two in each
direction so that the DoF of the coarsest mesh on each core stays constant.
We report the execution times as a function of the number of cores for the
domains Ha1c8 and HaHc8 in Figs. 31 and 32.

As a matter of the semi-weak scaling, the execution time is always in-
creasing with the number of cores, in contrast to a perfect weak scaling that
would imply a constant execution time. Nevertheless for very large core
numbers we can see that the execution time for the solving increases signif-
icantly. Then, the communication overhead becomes obvious, which limits
the scalability of the multigrid algorithm to very large numbers of cores.
For Figs. 31 and 32 it is convenient to compare the cases which have been
sampled at the same number of cores and which are plotted within the same
graph. It shows that the “by a factor of four larger cases” always have a
better semi-weak scaling property. This is plausible as as the communica-
tion costs undergo a relative decrease. For the absolute semi-weak scaling
property good results are achieved up to ≈ 100 cores.

62



1 4 12 48 192 768

time in seconds
(log scale)

number of cores (log scale)

2

5

1

10

50

(((((((»»»»»»(((((((³³³³³³³¡
¡

¡
¡

¡
¡

¡

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

◦◦ ◦ ◦ ◦ ◦
◦ ◦ ◦◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

◦◦◦
◦◦
◦◦
◦◦
◦◦
◦◦

++++++++++++++++++++++++++++++++++++++++++++++++

¦ ¦ ¦ ¦
¦ ¦ ¦ ¦

¦¦ ¦ ¦ ¦ ¦
¦ ¦ ¦¦ ¦ ¦ ¦ ¦

¦ ¦ ¦ ¦¦ ¦ ¦
¦ ¦ ¦ ¦

¦ ¦¦¦
¦¦
¦¦
¦¦
¦¦
¦¦

ÃÃÃÃÃÃÃÃÃÃÃÃÃ
!!!!!!!!³³³³³³³³

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

◦◦ ◦ ◦ ◦ ◦ ◦
◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦

+++++++++++++++++++++++++++++++++++++++++++++

¦ ¦ ¦ ¦ ¦
¦ ¦ ¦ ¦¦ ¦

¦ ¦ ¦ ¦ ¦
¦¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦

¦ ¦ ¦ ¦
¦ ¦ ¦¦ ¦

¦ ¦ ¦
¦ ¦ ¦

¦ ¦

MGJA ◦◦◦◦GMJA ++++MGGS ¦¦¦¦GMGS

(a) 262 144 DoF (black) and 1 048 576 DoF (blue)

2 8 24 96 384

time in seconds
(log scale)

number of cores (log scale)

2

5

1

10

50

ÃÃÃÃÃÃÃÃ»»»»»»(((((((#
#

#
#

#
#

#

◦◦◦◦◦◦◦◦◦
◦◦◦◦◦◦◦◦◦◦

◦◦◦◦◦◦◦◦◦◦◦◦
◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

◦◦◦◦◦
◦◦◦◦◦

◦◦◦◦◦
◦◦◦

++++++++
++++++++

+++++++++
+++++++++

++++++++++
+++++++++

+++
+++

+++
+++

+++
+++

+

¦¦¦¦¦¦¦¦¦¦
¦¦¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦¦¦
¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦

¦¦¦¦
¦¦¦¦
¦¦¦¦
¦¦¦¦
¦¦¦

»»»»»»»(((((( !!!!!!!

◦◦◦◦◦◦◦◦◦
◦◦◦◦◦◦◦◦◦◦

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦
◦◦◦◦◦◦◦◦◦◦◦

◦◦◦◦

+++++++
+++++++

+++++++++
+++++++++++++

+++++++++++++++++
+++++

+++++
++++

¦¦¦¦¦¦¦¦
¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦
¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦
¦¦¦¦

MGJA ◦◦◦◦GMJA ++++MGGS ¦¦¦¦GMGS

(b) 523 264 DoF (black) and 2 095 104 DoF (blue)

Figure 31: The solution times in seconds of the multigrid method as a solver
and as a preconditioner for the PGMRES method with Jacobi and Gauss-
Seidel smoothers as a function of the number of cores for domain Ha1c8.
Four different cases with different fixed number of DoF per core (semi-weak
scaling) are depicted.

63



1 4 12 28 112 448 1792

time in seconds
(log scale)

number of cores (log scale)

2

5

1

10

50

0.5
»»»»»»»³³³³³»»»»ÃÃÃÃÃÃ´

´
´

´
´

´
,

,
,

,
,

,

◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦◦ ◦

◦ ◦ ◦ ◦ ◦◦◦
◦◦◦◦◦◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦
◦◦◦

◦◦◦
◦◦◦

◦◦◦◦
◦◦◦

◦◦◦
◦◦◦

+++++++++++++++++++++++++++++++++++++++++++++++++++++++

¦ ¦ ¦ ¦ ¦
¦ ¦ ¦ ¦¦¦

¦¦¦¦
¦¦¦¦

¦¦¦
¦¦¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦¦¦

¦¦¦
¦¦¦

¦¦¦¦
¦¦
¦¦
¦¦
¦¦
¦¦
¦

³³³³³³ÃÃÃÃÃ»»»» !!!!!!

◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦◦◦

◦◦◦◦◦◦◦
◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦◦◦◦◦
◦◦◦◦◦

◦

+++++++++++++++++++++++++++++++++++++++++++

¦ ¦ ¦ ¦ ¦
¦ ¦ ¦ ¦¦ ¦

¦ ¦ ¦ ¦ ¦¦¦
¦¦¦¦¦¦ ¦ ¦

¦ ¦ ¦ ¦ ¦ ¦¦¦¦
¦¦¦¦

¦¦¦

MGJA ◦◦◦◦GMJA ++++MGGS ¦¦¦¦GMGS

(a) 262 144 DoF (black) and 1 048 576 DoF (blue)

2 8 20 56 224 896

time in seconds
(log scale)

number of cores (log scale)

2

5

1

10

50

³³³³³³³³³³(((((!!!!!!½
½

½
½

½
½

◦◦◦◦◦◦◦◦◦◦
◦◦◦◦◦◦◦◦◦◦

◦◦◦◦◦◦◦
◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

◦◦◦◦◦◦◦
◦◦◦◦◦◦◦

◦◦◦◦◦◦
◦◦◦◦◦
◦◦◦◦◦
◦◦◦◦◦
◦◦

+++++++
+++++++

++++++
++++

++++
++++++++++++++

+++++++
+++++

+++++
+++++

++++
++++

++++
++++

++

¦¦¦¦¦¦¦¦¦¦
¦¦¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦¦
¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦¦
¦¦¦¦¦¦¦¦¦

¦¦¦¦
¦¦¦¦
¦¦¦¦
¦¦¦¦
¦¦¦¦
¦

»»»»»»!!!! »»»»»»

◦◦◦◦◦◦◦◦
◦◦◦◦◦◦◦◦

◦◦◦◦◦◦◦◦◦◦◦◦
◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

◦◦◦◦◦◦◦◦◦◦◦

++++++++
++++++++

++++++
+++++

++++++++++
++++++++++++++++

++++++++

¦¦¦¦¦¦¦¦¦¦¦
¦¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦
¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦¦¦¦

MGJA ◦◦◦◦GMJA ++++MGGS ¦¦¦¦GMGS

(b) 523 264 DoF (black) and 2 095 104 DoF (blue)

Figure 32: The solution times in seconds of the multigrid method as a solver
and as a preconditioner for the PGMRES method with Jacobi and Gauss-
Seidel smoothers as a function of the number of cores for domain HaHc8.
Four different cases with different fixed number of DoF per core (semi-weak
scaling) are depicted.

64



8 Conclusions

For the considered model problem of an elliptic PDE on a rectangular do-
main we implemented and tested a multigrid solver with a Jacobi smoother,
a multigrid solver with a Gauss-Seidel smoother, the Preconditioned Gen-
eralized Minimal Residual Method (PGMRES) with a multigrid precondi-
tioner using the Jacobi smoother, and the PGMRES method with a multi-
grid preconditioner using the Gauss-Seidel smoother. In contrast to stan-
dard problems, the domain contains both an internal conducting structure
with a Dirichlet boundary condition and an inner empty space with a Neu-
mann boundary condition. As soon as the inner empty space becomes un-
aligned with the grids of the multigrid algorithm, the second order imple-
mentation of the Neumann boundary gives much better results than a first
order counterpart.

As long as these internal structures are aligned with the grids of the dif-
ferent levels of the multigrid V-cycle there seems to be just a small negative
effect of the iterative multigrid method and the property of the multigrid
method as an efficient preconditioner on the convergence rate. However, if
the internal structures are not aligned, the convergence rate can be signifi-
cantly reduced. In the worst case the multigrid solver will not converge at
all. But even then, the multigrid method can still be used as an efficient
preconditioner for the GMRES iterative solver which will always converge.
Instead, there is only little influence of the size of the inner empty space and
inner conducting structure.

It is known that the effect of parallelization is only small on the Gauss-
Seidel smoother so that the performance of the local Gauss-Seidel smoother
is always superior to the Jacobi smoother. Hence, for the solvers tested here
either the multigrid solver with local Gauss-Seidel smoother (MGGS) or the
GMRES method with a multigrid preconditioner and a local Gauss-Seidel
smoother (GMGS) give the best results.

For the multigrid method one benefits from both the fast execution time,
which can be orders of magnitude faster than ordinary iterative solvers and
the good hard and semi-weak scaling properties which go up to more than
a hundred cores for our test cases. It was shown that the strong and semi-
weak scaling properties become better, the larger the test cases are. This
is plausible as the communication costs undergo a relative decrease. In
addition, the iterative multigrid method has a very low memory consumption
compared to direct solvers. Thus, the multigrid method is suitable for large
problems on massively parallel machines like HPC-FF.

65



Acknowledgments

I would like to thank R. Hatzky and D. Tskhakaya for helpful discussions.

66



References

[1] R. Bank and T. Dupont, An optimal order process for solving finite
element equations, Math. Comp., 36 (1981), pp. 35–51.

[2] D. Braess and R. Verfürth, Multigrid methods for nonconforming finite
elements methods, SIAM J. Numer. Anal., 27 (1990), pp. 979–986.

[3] J. Bramble, Multigrid Methods, Pitman, London, 1993.

[4] J. Bramble, J. Pasciak, and J. Xu, The analysis of multigrid algo-
rithms with non-nested spaces or non-inherited quadratic forms, Math.
Comp., 56 (1991), pp. 1–34.

[5] A. Brandt, Multigrid techniques with applications to fluid dynamics:
1984 guide, in VKI Lecture Series, Mar. 1984, 176 pp.

[6] Z. Cai, On the finite volume element method, Numerische Mathematik,
58 (1991), pp. 713–735.

[7] Z. Cai, J. Mandel, and S. McCormick, The finite volume element
method for diffusion equations on general triangulations, SIAM J. Nu-
mer. Anal., 28 (1991), pp. 392–402.

[8] P. Chatzipantelidis, Finite Volume Methods for Elliptic PDE’s: A
New Approach, Mathematical Modelling and Numerical Analysis, 36
(2002), pp. 307–324.

[9] S. H. Chou, Analysis and convergence of a covolume method for the
generalized Stokes Problem, Math. Comp. 66 (1989), pp. 85–104.

[10] S. H. Chou and D. Y. Kwak, Multigrid algorithms for a vertex-centered
covolume method for elliptic problems, Numer. Math. 90 (2002), pp.
441–458.

[11] S. H. Chou and X. Ye, Unified analysis of finite volume methods for
second order elliptic problems, SIAM J. Numer. Anal., 45 (2007), pp.
1639–1653.

[12] R. E. Ewing, T. Lin, and Y. Lin, On the accuracy of the finite vol-
ume element method based on piecewise linear polynomials, SIAM J.
Numer. Anal., 39 (2002), pp. 1865–1888.

[13] W. Hackbush, Multigrid Methods and Applications, Springer-Verlag,
Berlin, Germany, 1985.

67



[14] M. T. Heath, Scientific Computing: An Introductory Survey, The
McGraw-Hill Companies, INC., 1996.

[15] S. Kaczmarz, Angenäherte Auflösung von Systemen linear Gleichun-
gen, Bulletine de l’Academie Polonaise des Sciences Letters, 35 (1937),
pp. 355–357.

[16] K. S. Kang, Convergence estimates for multigrid algorithms with gen-
eral smoothing, Ph. D. Thesis, Korea Advanced Institute of Science
and Technology, 1999.

[17] K. S. Kang, Covolume-based intergrid transfer operator in P1 non-
conforming multigrid method, Applied Numerical Mathematics, 51
(2004), pp. 47–67.

[18] K. S. Kang, P1 nonconforming finite element method for radiation
transport, SIAM J. Sci. Comput., 25 (2003), pp. 369–384.

[19] K. S. Kang, Parallelization of the Multigrid Method on High Perfor-
mance Computers, IPP-Report 5/123, 2010.

[20] K. S. Kang and D. E. Keyes, Implicit symmetrized streamfunction
formulations of magnetohydrodynamics, Int. J. Numer. Meth. Fluids,
58 (2008), pp. 1201–1222.

[21] K. S. Kang and D. Y. Kwak, Error Estimate in L2 of a covolume
method for the generalized Stokes problem, Numer. Methods Partial
Differential Eq., 22 (2006), pp. 165–179.

[22] A. Quarteroni, R. Sacco, and F. Saleri, Numerical Mathematics, Texts
in Applied Mathematics 37, Springer, 2007.

[23] Y. Saad and M. H. Schultz, GMRES: A Generalized Minimal Residual
Algorithm for Solving Nonsymmetric Linear Systems, SIAM J. Sci.
Stat. Comput., 7 (1986), pp. 856–869.

[24] D. Tskhakaya and R. Schneider, Optimization of PIC codes by im-
proved memory management, J. Comp. Phys., 225 (2007), pp. 829–
839.

[25] P. Wesseling, An Introduction to Multigrid Methods, Wiley, Chich-
ester, 2003.

68


