Parallelization of the Multigrid Method on High
Performance Computers

K. S. Kang
High Level Support Team (HLST)
Max-Planck-Institut fiir Plasmaphysik
Boltzmannstrafle 2
D-85748 Garching bei Miinchen
Germany
kskang@ipp.mpg.de

August 16, 2010

Abstract

This article gives an introduction to the multigrid method. It dis-
cusses the issues involved and provides suggestions for parallelization
of the multigrid method on HPC platforms. As an example problem,
we consider cell-centered finite differences for the Poisson problem on
a rectangular domain with uniform meshes. We consider two different
intergrid transfer operators and investigate the convergence behavior
of the multigrid method with these operators. In addition, different
solvers are tested as a “lowest level” solver at the dip of the V-cycle
of the multigrid algorithm. Furthermore, the scaling property of the
multigrid method on massively parallel machines is investigated. We
show that the multigrid algorithm has both good weak and strong
scaling properties up to thousands of processors.

1 Introduction

The multigrid method is a well-known, fast and efficient algorithm to solve
many classes of problems including linear elliptic, nonlinear elliptic, parabolic,
and hyperbolic partial differential equations, and the set of Navier-Stokes
and Magnetohydrodynamic (MHD) equations. [1, 2, 4, 5, 6, 7, 8, 11]. Al-
though the multigrid method is complex to implement, researchers in many
areas think of it as an essential algorithm. They apply it to their prob-
lems because the number of operations of the multigrid method depends on

Method Storage Flops
Gauss-Elimination (banded) n’ n’
Gauss-Seidel Iteration n’ n’logn
Optimal SOR n3 n*logn
Conjugate Gradient Method n3 n3?logn
Full Multigrid Method n3 n3

Table 1: Order of required storage and flops for linear solvers.

the degree of freedom times the number of levels (log of the degree of free-
dom). We summarize the order of memory consumption and floating point
operations per seconds (flops) of well-known linear solvers, applied to the
linear Poisson problem on a uniform cubic domain, which has n3 degrees of
freedom and n vertices in each direction, in Table 1.

From many experiments it is well known that simple iterative methods
effectively reduce high-frequency errors but have difficulties in handling low-
frequency errors. In addition, the low-frequency structure of a function on
finer grids is well approximated on coarser grids. Using these facts, we can
reduce the low-frequency errors with the coarse grid error correction method
which requires less work and storage. Combining simple iterative methods
which reduce high-frequency errors and coarse grid error correction methods
which reduce low-frequency errors is the basic idea of the two-grid method.
Multigrid methods apply the two-grid method recursively from finest grids
to coarsest grids as shown in Fig. 1.

1.1 Basic analysis

To implement and analyze the multigrid method, we have to consider two
main parts of the multigrid algorithm, the smoothing operator and intergrid
transfer operator, separately.

We can use any type of smoothing operator including, Richardson type
(simplest one), Jacobi iteration, Gauss-Seidel iteration, Kancmarz iteration,
and incomplete LU decomposition (probably the most complex one). Natu-
rally, smoothing operators affect the performance of the multigrid method,
but one can have a good performance with the Richardson iteration. To
analyze the multigrid method, many authors use certain assumptions on
smoothing operators which, in turn, allow them to be replaced by simpler
smoothing operators.

The other important operators are the intergrid transfer operators, the

A Multigrid V-cycle

smoother | o\

Finest Grid

Restriction
transfer from fine
to coarse grid

coarse grid has fewer
cells (less work and

storage required) /4
/ Prolongation
° /' transfer f
\ / ransfer from coarse
N\,
/ . .
N / to fine grid
N\,
. /
Recursively apply N\ /
N\,
this idea until we have an N /

easy problem to solve :

Figure 1: Basic idea of the multigrid method

prolongation and restriction operators. These operators depend on the ge-
ometry and functional spaces, i.e., conforming or nonconforming method,
discretization method; e.g., finite element method, finite difference method,
finite volume method, covolume method, and cell-centered scheme or vertex-
centered scheme, etc. There are natural intergrid transfer operators for con-
forming and inherited functional spaces. For the nonconforming method or
non-inherited functional spaces, we can define the intergrid transfer opera-
tors in several different ways, e.g., geometrical based for the finite element
method, control volume based for the finite volume method.

Even if we do not have any geometric information, we can define the
intergrid transfer operators according to the properties of a linear operator,
i.e., the algebraic multigrid method.

In Section 2.2 we will discuss the properties of the chosen intergrid trans-
fer operators in detail.

1.2 Parallelization Issues

To get a good performance when parallelizing the program, we need to have
a good load balance over all cores (processors).

In general, the ratio of communication to computation on a coarse level
grid is larger than on a fine level grid. Since the multigrid method works on
both coarse and fine grid levels, we need to consider, in detail, the balance
between computational work and communication. Usually, the multigrid
method requires more work on coarse problems in comparison to other iter-
ative or direct methods.

In general, the balance between computation and communication is
highly dependent on machine architecture and problem sizes. Hence, we
need to determine the level at which we need to stop coarsening according
to the number of cores on each machine and problem size.

It is well known that the number of iterations required by the multigrid
method to get to a well converged solution depends only on the number
of levels. In addition, many iterative methods with the exception of the
Richardson and the Jacobi method are hard to parallelize or have a depen-
dence on the number of cores they are executed on. As an example, we
consider the Gauss-Seidel iteration method which is a preferred smoothing
operator. We consider a simple mesh and its numbering on a single core
and two cores in Fig. 2. To compute the updated value at point 2 in case
of a single core (point 8 on two cores), we use the updated value at point
1 and the old values at the other points (3,5,6,7). On two cores we use the
old values at the points (1,3,9,10,11) on PE1 otherwise PE1 would have to
wait until it receives the updated value of point 1 from PEQ. However, this
would be not feasible.

The issues about parallelization of the multigrid method and the choice
of the optimal coarsest level will be handled in Section 2.7.

2 The cell-centered finite difference multigrid
method
2.1 Discretization and boundary condition

The cell-centered finite difference (CCFD) is one of the most popular meth-
ods for solving second-order elliptic boundary value problems numerically

PEO PE1
(a) Single core (b) Two cores

Figure 2: The numbering on a single core and two cores (o: ghost points)

[9, 10]. CCFD is a finite volume type method and has been commonly used
by engineers and scientists because of its simplicity and local conservation
property.

We consider the following model problem:

-V -pVu=f in Q, (1)
u=0 on 0Q, (2)
where € is the unit square. For &k =1,2,...,J, divide uniformly into n xn

axiparallel subsquares, where n = 2%, Then the mesh sizes Az and Ay are
h = hy, = 1/2%. Such subdivisions are denoted by {&}.}, and each subsquare
in {€} is called a cell and denoted by Efj, i,j=1,2,...,2% Note that cell
Ef] is centered at the point (z;,y;) = ((i — 3)h, (j — 5)h) as given in Fig. 3.
For k =1,2,...,J, let V} denote the space of functions that are piecewise
constant on each cell. Integrating Eq. (1) by parts on each cell and replacing
the normal derivative on the edges by difference quotient of a function w in
Vi, we derive the finite difference equations as follows:

=P (Ui = wig) = Py (Ui — wig)
2 (3)
- pi,j_%(ui,j—1 = Uij) — pi,j+%(ui,j+1 —uij) = fijh’,
where i1 = p(xi_;,yj% etc.
27 2

Because in the cell-centered scheme there are no grid points on the
boundary, the treatment of boundary conditions is different from the vertex-
centered case. To impose the boundary condition in y-direction, we put a
ghost point b outside the domain shown in Fig. 3. Next, we set the func-

tional value at b, so that the function w satisfies the boundary condition on

)+ 1
X (Z"]i_) X X
1 .. 1
(i—1,7) (i))(Z‘FX,J) y
(Z_%hi) (Z—l—%,j)
i
" (4,5 = 1) " "
X X xa X
o C
xb

Figure 3: Cell-centered finite difference method on a quadratic domain.

the boundary point ¢, i.e.,

u(a) + u(b)

u(c) = 5

in case of the Dirichlet boundary condition or

=0, with u(b) = —u(a)

% = u(a)hiyu(b) =0, with u(b) =u(a)
(&
in case of the Neumann boundary condition.

As a model problem, we consider the Poisson problem (p = 1) with
the periodic boundary condition in z-direction and the Dirichlet bound-
ary condition in y-direction. As smoothing operator, we use the Red-Black
Gauss-Seidel iteration because it shows relatively good performance and
does not depend on the number of cores for CCFD of the Poisson prob-
lem. The Red-Black Gauss-Seidel iteration divides the domain in red and
black points as shown in Fig. 4. In each sweep the values of one color are
exclusively updated using the values of the other color. Hence, there is no
dependence on the order of updating during a sweep. This can be also seen

X o X o
o X o X
X] X o

Figure 4: Red-Black Gauss-Seidel iteration for the cell-centered finite differ-
ence method on a quadratic domain. (x: Black o: Red)

in the corresponding structure of the matrix which has nonzero values only
on the diagonal and its neighborhood off-diagonal belonging to the other
color. However, the Red-Black Gauss-Seidel iteration does not have this
property for general problems (e.g. 9,0yp # 0).

2.2 Intergrid transfer operators

We have to define two intergrid transfer operators, one is the restriction,
i.e., fine-to-coarse operator and the other the prolongation, i.e., coarse-to-
fine operator. In addition, these two intergrid transfer operators are the
adjoint operator of each other [11].

Here, we consider two different pairs of the intergrid transfer opera-
tors, one preserves piecewise constant functions (zeroth-order) and the other
preserves piecewise bilinear functions (first-order). To define the intergrid
transfer operator, we use the notation given in Fig. 5. The former operator
is simple and needs less work, but cannot be used for some problems that
require more regularities.

The expressions to compute the restriction (R, fine-to-coarse) and pro-
longation (P, coarse-to-fine) operators for piecewise constant are given in

@-------f-----------1--- @ oo - -

J—1-----

Figure 5: Intergrid transfer operators. x: fine grid cells, o: coarse grid cells

| e e |
1 1 1
1 1 3 1 3 1 [
L B4 64 | o4 g1 1 Jt1
1 1 1
1 1 1
, | i i
11 .3 0o | 9 3
i 1 : 64 61 64 61 1 J
1
| 1 1 1
——————— R M EEEEEES EEREEER SRR BERERES S
1 1 1
1 1 | 3 9 9 3 0
1 1 1 7 64 ' o4 ga 1J—1
! : ! :
i—1 i | | |
' 1 3 3 1
I | 64 64 [61 1J—2
| | |
o U U J

Figure 6: Contributions of fine grid cells of fine-to-coarse (restriction) trans-
fer operators to the coarse grid cells o (compare with Fig. 5).

Eqgs. (4) and (5).

w(i—1,7—1)+wu(i,j—1)+u(—1,7) + u(i,j)

Rolu(1,.7)] = . ()
and
Polu(i, j)] = u(l, J)
Rofu(i ~1,4)] = u(l,J) 5
Polu(i,j — 1] =u(l,J)
Polu(i — 1,5 — 1)] = u(l, J).

The expressions to compute the restriction (R;) and the prolongation
(Py) operators for piecewise bilinear function are given in Egs. (6) and (7).
1
Rufu(L, J)) = = {9[uli = 1.j = 1) +u(i,j = 1) +uli = 1.5) +u(i,)

+3u(i —2,7) +u(i —2,j — 1) +uli+1,7) +u(i+1,j—1)
+u(i,j—2)+ (z—lj—2)+u(2]+1)—|—u(z—1j—|—1)]

+ui—2,7—2)+u(i—2,j+1)+u(i+1,j—2)
+ u(

z+1j+1)}

i—-3i-2li-1 i lit1
-1 I I+1

Figure 7: Boundary treatment of the first-order intergrid transfer operator,
x: fine grid cells, o: coarse grid cells

and
Pylu(i,)] = u(l,J) +u(l +1,J +1) —;g)[u(I,J—F) +u(l+1,J)]
Rwu_1J”:9MLJ%+M[—LJ+1EZ%ML1Jy+MLJ+1ﬂ
_kud_lﬂ:9MLJ%+MI+LJ—1y;§MI+LJy+MLJ—1ﬂ

u(l,J) +u(l —1,J = 1)+ 3[u(l —1,J) + u(l,J — 1)]
16 '
(7)

In Fig. 6, we show the contributions of all associated fine cells to a coarse
cell for Ry and R;.

To define the first-order intergrid transfer operators (R; and P;), we
need some values which are located outside the domain (I +1 and ¢ + 1 in
Fig. 7). We can define the values outside the domain by using the boundary
conditions, e.g., homogeneous Dirichlet or Neumann boundary conditions.

Pilu(i—1,j = 1)] =

2.3 Numerical experiments with intergrid transfer operators

We have tested the multigrid method on a uniform square grid on a unit
square domain [0,1] x [0,1]. In each direction, we have 2! grid points where
[is a certain “level”, the “highest level” is the level on which we want to
achieve the solution and the “lowest level” is the level on which we solve ex-
actly. We use a V-cycle multigrid method with one time pre-smoothing, two
times post-smoothing and the Red-Black Gauss-Seidel iteration as smooth-
ing iterations. As test problem, we choose a sine source function, i.e.,
f(z,y) = sin(207z) sin(307y) in Eq. (1) and start the multigrid algorithm
with a zero value initial solution.

We have chosen test cases with varying values of the “highest level” and
the “lowest level”. However, we have found that the choice of the “lowest

10

Ry Py R1 Py
“highest level” | # of iter. | error red. | # of iter. | error red.
6 9 0.0605 9 0.0586
7 9 0.0650 11 0.0939
8 10 0.0795 12 0.1386
9 12 0.1032 13 0.1507
10 13 0.1261 13 0.1539
11 14 0.1514 13 0.1547
12 16 0.1779 13 0.1549
13 17 0.2082 13 0.1550
14 18 0.2444 13 0.1555

Table 2: The number of iterations and the average error reduction factor of
the multigrid method.

level” has virtually no effect on the number of iterations. In Table 2, we
report the number of iterations to get the required residual error (less than
1071 times the initial residual error) and the average error reduction factor,
i.e., the ratio of post-error to pre-error according to the “highest level” for
both intergrid transfer operators. We used level one as the “lowest level” by
default. Only in the case given in the last row where the “highest level” is
14, a “lowest level” of two has been used.

The results listed in Table 2 show that the error reduction factor and
the number of iterations are clearly dependent on the “highest level” in
case of the zeroth-order intergrid transfer operator. Instead, in case of the
first-order intergrid transfer operator there is hardly any influence left when
the “highest level” is further increased after the “highest level” of nine is
reached. Thus the zeroth-order intergrid transfer operator shows a better
performance for small problems, whereas the first-order intergrid transfer
operator shows a better performance for larger problems.

2.4 “Lowest level” approximations

In general, the ratio of communication to computation on coarse grid lev-
els is larger than on fine grid levels. We need to target a balance between
computation and communication which is highly dependent on machine ar-
chitecture and problem sizes.

There are many considerations to improve the performance of the multi-
grid method, for example, selection of coarsest approximation, using only a

11

small number of cores in parallel, stop of coarsening on a certain level. We
consider four popular solvers which will be used as coarsest problem solvers
on the “lowest level”; the Red-Black Gauss-Seidel method (Relaxation),
a sparse direct solver (IBM WSMP) [3], a dense direct solver (LAPACK
and ScaLAPACK for parallel usage), and the Conjugate Gradient Method
(CGM).

First, we compute the solution time using the above mentioned solvers
and the multigrid method on a single core for several problem sizes. In the
multigrid method we use a quite small 2 x 2 grid as “lowest level” to avoid
a strong influence of the “lowest level” solver which is actually the CGM. In
Sec. 2.7.1 it will be shown which choice of the “lowest level” is optimal.

The direct solvers (WSMP and LAPACK) spend typically more time at
the Choleski factorization which is performed only once for a given matrix,
than at the back substitution which is performed at every iteration. So it is
adequate to plot only the back substitution solving times of the direct solvers
[denoted as WSMP (solving) and LAPACK(solving)]. As a sparse solver,
WSMP performs the Choleski factorization in two consecutive steps. One is
the symbolic factorization which depends only on the matrix structure and
the other is the numerical factorization. This consecutive approach has its
advantages when the structure of the matrix persists and only its numerical
values are changing at each time step, i.e., one has to perform the numerical
factorization and solving steps on each time step. Hence, we report the times
for the numerical factorization and solving for WSMP as WSMP(chol).

We plot the graph of the solution time vs. the degree of freedom (DoF),
i.e., the problem size in Fig. 8. We run the code on an IBM p575 Power6
system. The graph shows the solution time of each solver together with the
requirements of using the multigrid method to solve different problem sizes.
For the Relaxation method, the solving time of the problem which has 22
DoF is faster than of 2'° DoF. This is because the number of iterations for
212 DoF is less than 20, but more than 100 for 2'° DoF. This phenomenon
sometimes happens for iterative methods on small problems. For the small-
est problem size (2% DoF), CGM, Relaxation, LAPACK (solving) are faster
than the other solvers. CGM is the fastest solver for relatively small prob-
lem sizes (from 20 to 2'® DoF). For large problem sizes, multigrid and
WSMP (solving) give similar good results.

This result suggests that we might get the fastest solution time when we
use the multigrid method with the single-core version of the CGM, Relax-
ation, and LAPACK (solving) as “lowest level” solver on grids with 28 DoF
and CGM as the “lowest level” solver on coarsest grids with 20 to 26 DoF.

12

time (log scale)

in sec&nds | | | | | +_|_
1000 . g
100....... L o L L L A
. X f
: < : :
10XX //_|/_+
X e |
o1} IR VAR :...;/./.:...3_.."........;.....+.Mu1t.1gr1d.
s — cam
0.01] . 5 o e oo WSMP
-) : o o o WSMP(chol)
: : : e ¢ ¢ WSMP(solving)
0.0010.0 04 82 . . <% ¥ LAPACK
¢%” : : : : o ¢ o« LAPACK(solving)
0.000lks L + ++Rela}%:ation
28 210 212 214 216 218 220 222 .

the degrees of freedom (log scale)

Figure 8: Solution times of different solvers on a single core of an IBM p575

Power6 system.

13

2.5 Parallelization of the different “lowest level” solvers

Next, we investigate the behavior of the different solvers mentioned in Sec. 2.4
when the number of cores is increased. It is well known that there exists
a maximum number of cores which shows the best performance to solve a
given problem with a certain size. Using larger numbers of cores than this
maximum number may even increase the solution time. This investigation
gives hints to determine what level is optimal as “lowest level” and what
method is optimal as “lowest level” approximation for a given number of
cores. These results depend strongly on the given HPC machine.

In Table 3, we report the results measured on the VIP machine at RZG.
VIP is an IBM p575 Power6 system with 205 compute nodes and connected
by a fast 8-link InfiniBand network. Each node of VIP has 32 processors
with just a single core per processor, i.e., 32 cores. We report the solution
times for Relaxation, CGM, LAPACK/ScaLAPACK (for more than one
core we use the latter) as ‘LAP’, LAPACK(solving) as ‘(S)’, WSMP (as
‘WSMP’ and “WSMS’), WSMP(Chol) as ‘C+S’, and WSMP (solving) as ‘(S)’
(compare with Fig. 8). The WSMP library uses two different approaches for
parallelization, the message passing interface (MPI) and a multithreaded
version. We use the multithreaded version on one node with 32 threads.
We report the results of both versions, WSMP for MPI and WSMS for the
multithreaded version.

The full-matrix solver (LAPACK) could not be used for the larger prob-
lems due to memory limitations. Hence, we denote “~” in Table 3 for LA-
PACK and the problem size of 2'* DoF. Due to these limitations, we did not
solve the larger problems (more than 2' DoF) with the full-matrix direct
solver.

For each solver and problem size we emphasized the optimal solution
time on a certain number of cores in boldface. Also, we emphasized superior
solution times of all solvers and all number of cores for a fixed problem size
by an underline.

From these results, we can derive the optimal number of cores which
has the best performance for a given problem size and solver. In addition,
the results show that CGM is the best parallel solver for problem sizes in
the range of 2'° to 2'6 DoF. The optimal number of cores increases as the
problem size increases.

14

level # of cores/threads

(DoF) 1 2 1 8 16 32
Rel 5(21%) | 0.00413 | 0.00075 | 0.00115 0.00364 0.00157 0.00461
6(21%) | 0.00210 0.00442 | 0.00135 | 0.00371 0.00404 0.00431
7(2M) | 0.02865 0.01430 0.00892 0.00953 0.00805 | 0.00560
8(216) | 0.42355 | 0.16906 | 0.07925 | 0.05286 | 0.03567 | 0.02764
CGM 5(21%) | 0.00017 | 0.00033 0.00042 0.00340 0.00114 0.00395
6(21%) | 0.00064 | 0.00079 0.00081 0.00345 0.00394 0.00214
7(214) 0.00441 0.00399 | 0.00280 | 0.00540 0.00522 0.00576
8(216) | 0.04129 0.02151 0.01301 0.01102 | 0.00761 | 0.01000
LAP 5(210) | 0.03341 0.07861 0.03633 0.02172 | 0.01645 | 0.04826
(S) 0.00117 | 0.00197 0.00121 | 0.00108 | 0.00122 0.02774
6(2'2) | 2.07746 | 7.88744 | 1.90999 | 0.72824 | 0.32742 | 0.18356
(S) 0.02875 | 0.04127 | 0.02900 | 0.01668 | 0.00877 | 0.00722
7(2) - - 148.769 | 50.5465 | 21.8205 | 8.31443
(S) - - 0.49466 0.29237 0.20640 | 0.11590
WSMP | 5(2!Y) | 0.00788 | 0.01092 | 0.01036 | 0.01048 | 0.01103 | 0.01195
C+S 0.00190 | 0.00098 | 0.00082 | 0.00087 | 0.00126 | 0.00204
(S) 0.00093 0.00044 | 0.00041 | 0.00048 0.00075 0.00120
6(212) | 0.03645 0.02488 0.02047 | 0.01912 | 0.01940 0.02044
C+S 0.00840 0.00374 0.00264 | 0.00213 | 0.00238 0.00303
(S) 0.00386 | 0.00154 | 0.00114 | 0.00106 | 0.00137 | 0.00181
7(2') | 0.15784 | 0.09120 | 0.06678 | 0.05571 0.05427 | 0.05182
C+S 0.03910 | 0.01689 | 0.01081 0.00752 | 0.00728 | 0.00740
(S) 0.01754 0.00653 0.00416 | 0.00339 | 0.00410 0.00467
8(216) | 0.73409 0.39989 0.26952 0.21257 0.19183 | 0.18255
C+S 0.19862 | 0.08535 | 0.04909 | 0.03225 | 0.02688 | 0.02420
(S) 0.08802 0.03150 0.01842 | 0.01325 | 0.01411 0.01524
WSMS | 5(21%) | 0.00788 | 0.00657 | 0.00784 0.00970 0.01181 0.01234
C+S 0.00190 | 0.00163 | 0.00279 0.00429 0.00608 0.00636
(S) 0.00093 | 0.00085 | 0.00180 | 0.00297 | 0.00436 | 0.00447
6(2'2) | 0.03645 | 0.02685 | 0.02769 | 0.03091 0.03407 | 0.03600
C+S 0.00840 | 0.00624 | 0.00710 | 0.00962 | 0.01232 | 0.01278
(S) 0.00386 | 0.00294 | 0.00357 0.00553 0.00757 0.00753
7(2) | 0.15784 | 0.11251 | 0.11749 0.12076 0.13580 0.13274
C+S 0.03910 | 0.02801 | 0.03143 | 0.03652 | 0.05074 | 0.04983
(S) 0.01754 | 0.01249 | 0.01293 | 0.01440 | 0.01827 | 0.01653
8(216) | 0.73409 | 0.51627 | 0.52712 | 0.53850 | 0.57903 | 0.69273
C+S 0.19862 | 0.14491 | 0.15318 0.16571 0.20477 0.31416
(S) 0.08802 0.06079 | 0.06015 | 0.06671 0.07602 0.11003

Table 3: Solution times, in seconds, of solvers depending on the number of
cores for several problem sizes. (Optimal core number in boldface for each
solver and underlined over all solvers on a fixed problem size.)

15

time (log scale) —— Multigrid
in seconds WSMP

S R o o o WSMP(col)
: ' : : : e ¢ ¢ WSMP(solving)
. |
1.0 : o.é.o..o. .o. o OOO
o1f.. L o LT S
ool

1 2 4 8 16 32
the number of cores (log scale)

Figure 9: Comparison of solution times of WSMP and the multigrid method
as a function of the number of cores on VIP to solve a problem with 220 DoF
within one node.

2.6 Parallelization for WSMP and the multigrid method

Next, we investigate the effect of parallelization for WSMP and the multigrid
method with CGM as “lowest level” solver. We solve the problem with
220 DoF on two different machines, VIP at RGZ and HPC-FF at JSC.
HPC-FF is an Intel Nehalem system with 1080 compute nodes, two Intel
Xeon X5570 (Nehalem-EP) quad-core processors per node and connected by
an Infiniband Mellanox ConnectX QDR HCA. From now on, we use ‘core’
instead of ‘processor’ for VIP. We report the solution times in Figs. 9 and 10
and the speed up relative to the solution times on a single-core in Figs. 11
and 12. The runs on VIP had been restricted to the maximum number of 32
cores on a node to prevent internode communication. Instead, distributing
our code over different nodes on HPC-FF turned out not to be critical. We
ran our code on up to 64 cores, i.e. eight nodes, on HPC-FF. A vertical
dashed line separates single and multiple node usage in Figs. 10 and 12.

In Figs. 9-12, we plot three different graphs for the sparse direct solver,
i.e., WSMP for the total solution time, WSMP(chol) for the numerical fac-
torization and back substitution time, and WSMP (solving) for the back

16

time (log scale) —— Multigrid
in seconds WSMP

P

10

1.07 »

0.1

0.01

1 2 4 8 16 32 64
the number of cores (log scale)

Figure 10: Comparison of solution times of WSMP and the multigrid method
as a function of the number of cores on HPC-FF for a problem size of
220 DoF. (Dashed vertical line separates single and multiple node usage)

17

—— Multigrid

Speed up (log scale) WSMP

T o o o WSMP(chol)
; ; ; ; : e o ¢ WSMP(solving)
320, ... o S o : . C deal speed
160....... ________ _______ ," o ___________________
s S g0
T geesdeeecee

Y/ ;888383_ _________________________________
2 1. B2 S

1 2 4 8 16 32 ’

the numbers of cores (log scale)

Figure 11: Speed up of solution times of WSMP and the multigrid method
as a function of the number of cores on VIP for a problem size of 22° DoF.

substitution time only.

The graphs show that WSMP (solving) is faster than the multigrid method
on a small number of cores, less than four cores in case of VIP and less than
sixteen cores in case of HPC-FF. For a larger numbers of cores, the multigrid
method performs better than WSMP due to better scaling properties. The
results of the multigrid method show that the solution time on VIP declines
up to 32 cores and stays constant subsequently for a higher number of cores.
The solution times on HPC-FF declines even up to 64 cores.

2.7 Scalability of the multigrid method

In this Subsection, we investigate the strong and weak scaling behavior of
the multigrid method. Strong scaling means to run a fixed problem size on
an increasing number of cores. Weak scaling means to increase the problem
size simultaneously as the number of cores is increased, i.e., the number of
DoF per core is fixed.

18

Speed up (log scale)

64

32

16

— Multigrid
—— WSMP

T . . ! . . g
R S T o .. .0 0 o WSMP(chol)
; ; ! ; 7 -7 e o @ WSMP(solving)
_____________________ :””””””""”””f---Idealspeedup
............... ioooooooo
.............. IOO
Z .0069206000
............. v 800 L — T L
:..OOOO :
. . 1
..... @ /T e
2 :
1 2 4 8 16 32 64

the numbers of cores (log scale)

Figure 12: Speed up of solution times of WSMP and the multigrid method as
a function of the number of cores on HPC-FF for a problem size of 220 DoF.
(Dashed vertical line distinguishes between single and multiple node usage)

19

2.7.1 Strong scaling of the multigrid method

We investigate the strong scaling behavior of the multigrid method on VIP
and HPC-FF. We measure the solution time of the multigrid method for a
larger problem size which has 22* DoF (I = 12). We distinguish between
the multi- and single-core version on the single-core levels. To construct the
single-core version for calculating the single-core levels, at a certain level we
gather the data from all the cores on each core (called “gathering level”). In
our case either on level six or level seven. From that level on, we proceed on
each core simultaneously with the serial multigrid algorithm. Finally, the
algorithm terminates when it reaches the “lowest level” and solves on that
level with one of the proposed methods for the “lowest level” solution. Then
we collect the part of the solution when ascending the levels, starting with
the serial and after we have reached the “gathering level” again with the
parallel multigrid method. We illustrate the implementation of the whole
scheme in Fig. 13.

We consider the serial multigrid version on the single-core levels for the
following reasons. First of all, the degree of freedom at certain levels may
be less than the number of cores. In those cases, one has to switch to
the serial version for calculating the single-core levels. And secondly, the
execution time of the serial multigrid algorithm can be smaller than in the
parallel version, even if there is some additional communication overhead
for gathering the data. This is e.g., the case for the CGM solver when using
problem sizes between 2! and 2!2 DoF (see Table 3).

We use the first-order intergrid transfer operator and three different
“lowest level” solvers: CGM, Relaxation, and WSMP. For the WSMP “low-
est level” solver, we run the Cholesky factorization (the symbolic and nu-
merical factorization) only once and run the back substitution as many times
as needed for the iterations of the multigrid method.

We report the results measured on VIP in Table 4 and on HPC-FF in
Table 5. We tested three “lowest levels” (4, 5, 6) and different numbers of
cores ranging from 2 to 256 on VIP and from 4 to 512 on HPC-FF. Due
to the low accessibility of batch queues with 512 or more cores on VIP, we
restricted the maximum number of cores to 256. Instead, we used up to 512
cores on HPC-FF. Larger number of cores are not feasible as a problem size
of 224 DoF turns out to be too small (less than 0.1 sec) for such runs.

Depending on the problem size the maximum number of cores which can
be used with the parallel WSMP version is limited. In Tables 4 and 5, we
denote ‘x*’ in cases where the number of cores exceeds this maximum limit.
If the number of cores exceeds the number of degrees of freedom, we are also

20

V-cycle Multigrid Method

Highest Level

P ——
.
Restriction
Prolongation
Multi-core <
levels @ Pre-smoothing o
\
Gathering level S S—
(

Single-core <

levels — @ Post-smoothing
\
Lowest level
Lowest level solver

Figure 13: A schematic view of the V-cycle multigrid method which starts
as a parallel multigrid implementation, then after passing the gathering level
converts to a single-core multigrid version and finally ends up in one of the
possible choices for the “lowest level” solver.

not able to use multiple cores. Such cases are denoted with ‘—’ in Table 5.
In Table 4 and 5, the numbers in the first column give the “lowest levels” [.
Then the degree of freedom of the “lowest level” is 22/, The number in (-)
represents the “gathering level” at which we gather the distributed data on
each core and continue with the single-core multigrid version.

In Table 4 and 5, we emphasize the fastest solution time for a certain
“lowest level” solver using a fixed number of cores given in boldface and the
fastest solution time of all “lowest level” solvers marked by an underline. In
addition, we highlight in red all solution times which match within 1% the
fastest solution time over all “lowest level” solvers. As a reference, we report
the optimal solution times plus 1% given in seconds in Table 6. It becomes

21

L\ P 2 4 8 16 32 64 128 256
4 20.339 | 9974 | 4.729 | 2.633 | 1.104 | 0.397 | 0.196 | 0.114
5 20.048 | 9.955 | 4.814 | 2.631 | 1.120 | 0.390 | 0.209 | 0.113
6 20.215 | 10.121 | 4.766 | 2.616 | 1.124 | 0.396 | 0.203 | 0.106

4(6) | 20.058 | 10.474 | 4.705 | 2.615 | 1.074 | 0.402 | 0.200 | 0.112

5(6) | 20.247 | 10.988 | 4.710 | 2.622 | 1.116 | 0.405 | 0.205 | 0.123

6(6) | 20.139 | 10.000 | 4.780 | 2.658 | 1.123 | 0.438 | 0.241 | 0.153

4(7) | 20.245 | 9.943 | 4.721 | 2700 | 1.110 | 0.435 | 0.228 | 0.136

5(7) | 20.453 | 10.007 | 4.767 | 2.627 | 1.116 | 0.439 | 0.233 | 0.154

6(7) | 20.176 | 10.060 | 4.774 | 2.675 | 1.155 | 0.475 | 0.291 | 0.184

(a) Conjugate Gradient Method as “lowest level” solver.

L\ P 2 4 8 16 32 64 128 256
4 20.180 | 9.923 | 4.716 | 2.823 | 1.074 | 0.395 0.199 | 0.117
) 20.124 | 9.931 | 4.699 | 2.635 | 1.072 | 0.399 0.199 | 0.109
6 20.033 | 9.917 | 4.709 | 2.666 | 1.079 | 0.394 | 0.196 0.112

4(6) | 20.161 | 9.926 | 4.711 | 2.633 | 1.086 | 0.397 | 0.203 | 0.116

5(6) | 20.192 | 9.911 | 4.706 | 2.634 | 1.082 | 0.399 0.205 0.112

6(6) | 20.236 | 9.976 | 4.811 | 2.633 | 1.087 | 0.411 0.216 | 0.137

4(7) | 20.587 | 10.032 | 4.753 | 2.656 | 1.121 | 0.435 0.228 | 0.140

5(7) | 20.187 | 9.937 | 4.731 | 2.670 | 1.116 | 0.438 | 0.244 | 0.140

6(7) | 20.132 | 9.991 | 4.744 | 2.666 1.119 | 0.446 | 0.252 | 0.147

(b) Gauss-Seidel Relaxation method as “lowest level” solver.

L\ P 2 4 8 16 32 64 128 256
4 20.009 | 9.943 | 4.753 | 2.652 | 1.132 oK oK oK
5 19.992 | 10.209 | 4.764 | 2.693 | 1.143 | 0.471 ok ok
6 20.170 | 10.218 | 5.050 | 2.989 | 1.333 | 0.491 | 0.279 | 0.292

4(6) | 20.076 | 10.029 | 4.903 | 2.673 | 1.121 | 0.406 | 0.205 | 0.119

5(6) | 20.217 | 10.073 | 4.818 | 2.645 | 1.135 | 0.422 | 0.217 | 0.139

6(6) | 20.189 | 10.220 | 4.877 | 2.739 | 1.202 | 0.487 | 0.283 | 0.193

4(7) | 20.253 | 10.023 | 4.772 | 2.704 | 1.161 | 0.439 | 0.232 | 0.141

5(7) | 20.270 | 10.054 | 4.903 | 2.677 | 1.172 | 0.455 | 0.250 | 0.160

6(7) | 20.161 | 10.125 | 4.907 | 2.762 | 1.237 | 0.522 | 0.312 | 0.218

(c) Sparse direct method (WSMP) as “lowest level” solver.

Table 4: Total solution time in seconds of the multigrid method with the
first-order intertransfer operator for a problem size of 22 with several dif-
ferent “lowest levels” on VIP.

22

L\ P 4 8 16 32 64 128 256 512

4 11.061 | 5.599 | 2.806 | 1.416 | 0.705 | 0.358 | 0.178 -

5 11.035 | 5.581 | 2.805 | 1.415 | 0.706 | 0.353 | 0.175 | 0.073

6 11.047 | 5.588 | 2.803 | 1.415 | 0.713 | 0.356 | 0.174 | 0.083
4(6) | 11.074 | 5.586 | 2.808 | 1.418 | 0.709 | 0.353 | 0.182 | 0.084
5(6) | 11.104 | 5.597 | 2.817 | 1.426 | 0.719 | 0.374 | 0.189 | 0.096
6(6) | 11.099 | 5.651 | 2.875 | 1.483 | 0.773 | 0.425 | 0.247 | 0.155
4(7) | 11.075 | 5.607 | 2.816 | 1.427 | 0.731 | 0.372 | 0.192 | 0.101
5(7) | 11.074 | 5.616 | 2.825 | 1.435 | 0.732 | 0.376 | 0.199 | 0.107
6(7) | 11.064 | 5.674 | 2.824 | 1.495 | 0.788 | 0.435 | 0.256 | 0.158

(a) Conjugate Gradient Method as “lowest level” solver.

L\ P 4 8 16 32 64 128 256 512

4 11.061 | 5.586 | 2.831 | 1.421 | 0.709 | 0.358 | 0.186 -

) 11.043 | 5.597 | 2.807 | 1.419 | 0.710 | 0.356 | 0.182 | 0.092

6 11.038 | 5.651 | 2.813 | 1.416 | 0.708 | 0.364 | 0.183 | 0.090
4(6) | 11.066 | 5.593 | 2.808 | 1.419 | 0.709 | 0.357 | 0.178 | 0.088
5(6) | 11.059 | 5.603 | 2.807 | 1.419 | 0.710 | 0.361 | 0.177 | 0.088
6(6) | 11.045 | 5599 | 2.811 | 1.421 | 0.715 | 0.364 | 0.182 | 0.094
4(7) | 11.064 | 5.602 | 2.822 | 1.433 | 0.724 | 0.371 | 0.189 | 0.099
5(7) | 11.063 | 5.598 | 2.824 | 1.431 | 0.724 | 0.373 | 0.191 | 0.099
6(7) | 11.068 | 5.605 | 2.824 | 1.437 | 0.726 | 0.376 | 0.196 | 0.106

(b) Gauss-Seidel Relaxation method as “lowest level” solver.

L\ P 4 8 16 32 64 128 256 512

4 11.044 | 5.598 | 2.816 oK oK oK oK -

5 11.064 | 5.609 | 2.822 | 1.469 | 0.847 ok oK ok

6 11.247 | 5.620 | 2.850 | 1.476 | 0.856 | 0.651 | 0.755 | 1.260
4(6) | 11.139 | 5.605 | 2.815 | 1.432 | 0.716 | 0.364 | 0.185 | 0.084
5(6) | 11.076 | 5.624 | 2.825 | 1.457 | 0.736 | 0.381 | 0.215 | 0.105
6(6) | 11.092 | 5.669 | 2.876 | 1.487 | 0.781 | 0.430 | 0.251 | 0.164
4(7) | 11.089 | 5.615 | 2.824 | 1.437 | 0.728 | 0.376 | 0.198 | 0.105
5(7) | 11.086 | 5.633 | 2.837 | 1.447 | 0.740 | 0.392 | 0.209 | 0.109
6(7) | 11.115 | 5.680 | 2.891 | 1.502 | 0.794 | 0.443 | 0.262 | 0.170

(c) Sparse direct method (WSMP) as “lowest level” solver.

Table 5: Total solution time in seconds of the multigrid method with the
first-order intertransfer operator for a problem size of 224 with several dif-

ferent “lowest levels” on HPC-FF.

23

2 4 8 16 32 64 128 256
1 19.992 | 9.911 | 4.699 | 2.615 | 1.072 | 0.390 | 0.196 | 0.106
1.01 | 20.192 | 10.010 | 4.746 | 2.641 | 1.083 | 0.394 | 0.198 | 0.107

(a) VIP.

P 4 8 16 32 64 128 256 512
1 11.035 | 5.581 | 2.803 | 1.415 | 0.705 | 0.353 | 0.174 | 0.073
1.01 | 11.145 | 5.637 | 2.831 | 1.429 | 0.712 | 0.356 | 0.176 | 0.074

(b) HPC-FF.

Table 6: The optimal solution times with an addition of 1% in seconds of the
multigrid method with the first-order intergrid transfer operator for 224 DoF
on VIP and HPC-FF.

obvious that the differences measured between the different multigrid im-
plementations are within a couple of ten percents only. However, it clearly
shows that for larger number of cores the difference increases. This is a mat-
ter of how well the different multigrid implementations are parallelized (see
Amdahl’s law). Thus, the choice for the optimal solver among the multigrid
implementations presented here is of interest when a good strong scaling
property is required.

From Table 4 and 5, we can see that the data measured on HPC-FF are
more consistent than the data measured on VIP. This seems due to the fact
that on VIP there is a higher “noise level” due to operating system processes
than on HPC-FF. Consequently, the uncertainty of the measured execution
times on VIP is larger. In the remainder of this subsection we will focus on
the results from HPC-FF.

The parallel multigrid version using the serial version of the single-core
levels together with the “gathering level” six performs in all cases better
than the serial version of the single-core levels together with the “gathering
level” seven. Hence, the “gathering level” should not be larger than six,
otherwise the execution is switched too early from parallel to serial which
results in a performance penalty.

For WSMP it can be clearly seen why a single-core version of the “lowest
level” solver has it benefits. Otherwise WSMP could not be used as “lowest
level” solver on level four for more than 16 cores in parallel. In addition,
Fig. 8 suggests even better results can be achieved with the LAPACK solver
instead of the WSMP solver for the cases with “gathering level” six and

24

“lowest level” four.

Within the uncertainty of the measured execution times the parallel
CGM “lowest level” solver with a “lowest level” of five gives the best results
on HPC-FF up to the maximum chosen number of 512 cores. Thus, only
in cases where the number of cores is larger than the number of DoF a
single-core “lowest level” solver version should be taken into account.

2.7.2 Strong scaling of the optimal multigrid algorithm

From Table 5, we choose the best performing solver combination to inves-
tigate the strong scaling behavior of the multigrid method, i.e., multi-core
version of multigrid with parallel CGM as the “lowest level” solver and level
five as the “lowest level”. We plot the solution time and speed up as a func-
tion of the number of cores in Fig. 14 for VIP and in Fig. 15 for HPC-FF.
In the graphs, we plot the speed up of the solution time compared to two
cores for VIP and to four cores for HPC-FF. As a reference, we plot the line
of ideal speed up in both graphs. We also plot the speed up ratio of the
solution time to the solution time on half the number of cores. For such a
speed up ratio, the ideal is two.

In both cases, the results show a super-linear speed up due to cache
effects which can happen when the memory consumption per core decreases.
The super-linear speed up can be identified for more than 32 cores on VIP.
We conclude that the multigrid method has linear scaling speed up to the
maximum number of cores used in this study, i.e., 256 cores on VIP and to
512 cores on HPC-FF.

2.7.3 Weak scaling of the optimal multigrid algorithm

Next, we investigate the weak scaling properties of the multigrid method
on HPC-FF. To investigate the weak scaling, we fix the work load, i.e., the
DoF per core. Because doubling the mesh size in each direction increases
the DoF by a factor of four, we increase the number of cores by a factor
of four as well, to fix the DoF per core. We test four cases, i.e., 2'® DoF,
219 DoF, 220 DoF, and 22! DoF per core with a weak scaling test, ranging
from one core to 2048 cores on HPC-FF.

Due to the choice of our discretization of the unit square domain, (see
Sec. 2.1), the number of cells (the DoF), is given by 2%. As a matter of
grid refinement, we can run only cases having an even power, e.g., 229 DoF
and 222 DoF on a single core. Cases having an odd power, e.g., 2'9 DoF or
221 DoF can only run in parallel on two cores because then the total number

25

time (log scale)

in seconds —— Solution Time Speed Up (log scale)
204 L —— Speed Up (Ideal) . . L 2200
. p
; e o o Speed Up ; °

10 [0 N o 6 00 Speed Up- (ratio) - - - Lo 7 100
50 1. 50 -
200 |..... .. S . o] 20 .
1.0 L o Y Ne L 10 .
o5 NG s
02d 000400000 g . - ° N 2 ..
01 &% ... S S ST SR S, 0.

2 4 8 16 32 64 128 256

the number of cores (log scale)

Figure 14: The solution times, speed up and speed up ratio of the multigrid
method as a function of the number of cores on VIP uses a problem size of
224 DoF (strong scaling).

26

time (log scale)
in seconds — Solution Time Speed Up (log scale)

1 —— Speed Up (Ideal) - 2
10 - | _ L

5.0

2.0
1.0

0.5

029000 800060000000O0O0O00-60-0-

0.1 ¢

~N

4 8 16 32 64 128 256 012
the number of cores (log scale)

Figure 15: The solution times, speed up, and speed up ratio of the multigrid
method as a function of the number of cores on HPC-FF using a problem
size of 22* DoF (strong scaling).

27

time (log scale) o 0 02'9 DoF —— 2% DoF

in seconds o o 028 DoF 220 DoF
553 - \ : : —_— — — S — ————
2.73 — - e — — e T
15 ... T P, P . L L . . GO 60 0 X
;sz(oOOOOQOOQOOQ(OOOOOS?(OOOOOQ(- !
1.0 |- R P
................ TN R &N P .l.....’... o .!

1 2 4 8 16 32 64 128 256 512 1024 2048
the number of cores (log scale)

Figure 16: The solution times as a function of the number of cores on HPC-
FF to solve the test problem with a fixed number of DoF per core (weak
scaling).

of DoF adds up to 220 and 222, respectively. We plot the solution times in
Fig. 16 and the relative solution times compared to the solution time of the
minimum number of cores in Fig. 17.

The graph in Fig. 16 shows that the multigrid method has very good
weak scaling properties. We can investigate this further in Fig. 17. The
larger the problem size per core the better is the weak scaling property. For
the two largest test cases with 229 DoF and 22! DoF per core, the execution
time increase is less than 5%. This is remarkable as the scaling of the number
of cores spans a factor of 1024.

28

o 0 029 DoF — 221 DoF
Ratio e o 028 DoF —— 220 DoF

1 2 4 8 16 32 64 128 256 512 1024 2048
the number of cores (log scale)

Figure 17: The relative solution times as a function of the number of cores
on HPC-FF to solve the test problem with a fixed number of DoF per core
(weak scaling).

29

3 Conclusions

The multigrid algorithm is a well-known and efficient algorithm to solve
many classes of problems but it is complex to implement especially when
it comes to parallel execution. It usually can not be implemented by just
calling an appropriate library routine. Instead, the geometrical multigrid
algorithm has to be adapted by hand to the problem of interest. Special
care has to be taken about the (parallel) computer hardware which should
be finally used for program execution.

In these notes we have assessed the multigrid method to solve the Poisson
problem on a rectangular domain with uniform meshes using a cell-centered
finite differences (CCFD) scheme. In the focus was the performance of the
implemented multigrid algorithm on massively parallel machines with many
thousands of processors.

Initially, it was not clear if the zeroth- or first-order intergrid transfer
operators would provide better performance for the CCFD method. Corre-
sponding tests revealed that in the case of the first-order intergrid transfer
operator the error reduction factor and the number of iterations did not
change any further with the total number of multigrid levels after a “high-
est level” of nine was reached. Instead the zeroth-order intergrid transfer
operator imposes a strong correlation of these quantities to the total number
of multigrid levels. Thus, we conclude that the first-order intergrid transfer
operator should be preferred for larger problems.

We investigated four popular solvers as coarsest problem solvers on the
“lowest level”: the Red-Black Gauss-Seidel Relaxation method, a sparse
direct solver (IBM WSMP), a dense direct solver (LAPACK), and the Con-
jugate Gradient Method (CGM). The solution time of each solver was mea-
sured for several different problem sizes from 2% to 222 degree of freedoms
(DoF). For our smallest problem size (2% DoF), CGM, Relaxation and LA-
PACK(solving) are faster than the other solvers and CGM is the fastest
solver for relatively small problem sizes (from 20 to 2!6 DoF). For larger
problem sizes (> 2'6 DoF), multigrid and WSMP back substitution yield
similar good results.

In addition, we compared the parallel performance of the solvers. The
results show that CGM is again the best parallel solver for problem sizes
with 219 to 216 DoF. As expected, the optimal number of cores increases
with the size of the problem.

Next, we focused on the scaling properties of the parallel WSMP and
multigrid algorithm to solve a larger problem with 22° DoF. The back sub-
stitution of WSMP is better than the multigrid method on small number

30

of cores, i.e., less than four cores for VIP and less than sixteen cores for
HPC-FF. For larger numbers of cores, the multigrid method is faster than
WSMP due to better scaling properties. Thus, it is the best scaling method
for larger problems.

This result suggests that we might get the fastest solution time with one
of the following strategies. Either we combine the parallel multigrid method
with the parallel CGM solver as “lowest level” solver, i.e., using the CGM
solver on the coarsest grid to get the exact solution. Or we gather the data
from all the cores on each core at a certain level (called “gathering level”)
and proceed with the single-core version of the multigrid method until we
reach the coarsest grid level. As “lowest level” solver we would have again
the choice between the CGM, Relaxation, and LAPACK/WSMP solver.
The second strategy has the benefit that it can enlarge the applicability
of the parallel multigrid algorithm for a fixed problem size to very large
numbers of cores (processors). In such cases, the degree of freedom at certain
levels might be less than the number of cores when approaching to the
“lowest level”. Hence, one has the choice between switching to the serial
version of the multigrid method for calculating the single-core levels or to
set the “lowest level” high enough in the V-cycle to keep its grid large
enough for parallelization. The first strategy has the disadvantage that the
parallel execution is abandoned in favor of a single-core execution and the
second strategy has the disadvantage that the multigrid algorithm which
acts very efficiently on the “high levels“ might be exchanged with a less
efficient algorithm used as a “lowest level” solver. It is nearly impossible
to tell in advance which strategy is optimal for a given hardware. Hence,
practical test had to be carried out.

Detailed tests show that within the uncertainty of the measured execu-
tion times the fully parallel multigrid implementation with parallel CGM
“lowest level” solver with a “lowest level” of five, gives the best results for
a problem size of 224 on HPC-FF up to the maximum number of 512 cores.
Thus, only in cases where the number of cores is larger than the number
of DoF, the single-core multigrid version should be taken into account. A
strong scaling of this optimal solver shows a perfect linear speed up to 512
cores on HPC-FF.

Finally, we investigated the weak scaling properties of the optimal solver
for four different test cases, i.e., 2!® DoF, 2! DoF, 2?° DoF, and 2?' DoF
per core with weak scaling from one core to 2048 cores on HPC-FF. The
multigrid method has very good weak scaling properties. The larger the
problem size per core the better it scales. For the two largest test cases with
220 DoF and 22! DoF per core, the execution time increases by less than

31

5%. This is remarkable as the scaling spans an increase of the core number
by a factor of 1024.

Over all, we showed that our implementation of the multigrid method
with the CGM as a “lowest level” solver and with first-order intergrid trans-
fer operators has very good strong and weak scaling properties. Thus, it is
suitable for usage on massively parallel machines like HPC-FF.

Acknowledgments

I would like to thank R. Hatzky and B. Scott for their helpful discussion.

References

1]
2]

J. Bramble, “Multigrid Methods”, Pitman, London, 1993.

A. Brandt, “Multigrid Techniques: 1984 Guide, with Applications to
Fluid Dynamics”, GMD studien 85, GMD, Forschungszentrum Infor-
mationstechnik, St. Augustin, Germany, 1984.

A. Gupta, “WSMP: Watson Sparse Matrix Package. Part I — di-
rect solution of symmetric sparse systems”, IBM Research Report
R(C21886(98462), 2000.

W. Hackbush, “Multigrid Methods and Applications”, Springer-
Verlag, Berlin, 1985.

K. S. Kang, “P; Nonconforming Finite Element Multigrid Method for
Radiation Transport”, SIAM J. Sci. Comp., 25 2003, pp. 369-384.

D. E. Keyes, “Terascale Implicit Methods for Partial Differential Equa-
tions”, The Barrett Lectures, University of Tennessee mathematics
Department, 2001, Contemporary Mathematics 306: 29-84, AMS,
Providence.

D. A. Knoll, G. Lapenta, and J. U. Brackbill, “A multilevel itera-
tive field solver for implicit, kinetic, plasma simulation”, Journal of
Computational Physics, 149 1999, pp. 337.

D. A. Knoll and W. J. Rider, “A multigrid preconditioned Newton-
Krylov method”, SIAM J. Sci. Comput., 21 1999, pp. 691.

32

9] Do Y. Kwak, “V-cycle multigrid for cell-centered finite differences”,
SIAM J. Sci. Comput., 21 1999, pp. 552-564.

[10] Do Y. Kwak and J. S. Lee, “Multigrid Algorithm for the Cell-Centered
Finite Difference Method II: Discontinuous Coefficient Case”, Numer-
ical Methods for Partial Differential Equations, 20 2004, pp. 742-764.

[11] P. Wesseling, “An Introduction to Multigrid Methods”, John Wiely,
Chichester, UK, 1992.

33

