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The NEMOFFT project addresses a well-known parallel scalability bottleneck of the global gyroki-
netic ORB5 code, in its current electromagnetic version NEMORB. This code is very HPC-resource
demanding, especially for large-sized simulations. It relies on efficient parallel algorithms that re-
quire filtering to refine the physical quantities and maintain appropriate numerical signal-to-noise
levels. The filtering is done via bi-dimensional Fourier transforms (FTs) that involve parallel ma-
trix transposes and hence require large data transfers across cores. Such communication naturally
impairs the code’s parallel scalability and renders, in practice, ITER-sized plasmas simulations un-
feasible. To cope with this, NEMORB’s filtering algorithm is modified. The Hermitian redundancy
inherent to its purely real data is invoked to effectively reduce the number of floating point op-
erations (FLOPs) involved in the FTs by roughly a factor of two. Further using a clever storage
for the resulting data (half-complex packed format) reduces the message size being communicated
by the same amount. Several parallel transpose methods are investigated within two main HPC
architectures, namely, Intel CPU-based with InfiniBand interconnect (HPC-FF at JSC in Jülich and
HELIOS at IFERC-CSC in Aamori) and IBM Power6 (VIP at RZG in Garching). The best overall
performer is found to be based on a XOR/MPI Sendrecv algorithm. Its flexibility allows to exploit
NEMORB’s low pass filter to further reduce the inter-core data exchange, yielding speedups higher
than two.
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I. INTRODUCTION

The NEMOFFT project aims at removing, or at least alleviating, a well-known parallel scalability
bottleneck of the global gyrokinetic particle-in-cell (PIC) code ORB5, in its current electromag-
netic version NEMORB. This code is very HPC-resource demanding, especially for large sized-
simulations. At each iteration, the particle charges are deposited on a spatial three-dimensional
(3D) grid, which represents the source term in the Poisson equation (the right-hand side). Due to
the strong spatial anisotropy in a tokamak, only a restricted set of degrees of freedom, or modes,
are allowed to exist, namely, the ones which are either aligned or close to being aligned with the
background guiding magnetic field. Using this physical restriction on the Poisson solver, not only
reduces the required FLOPs (solve only for the allowed modes), but also improves the numerical
signal to noise ratio, which is of central importance in a PIC code. In practice this amounts to
calculating bi-dimensional (2D) Fourier transforms to apply the corresponding filters, but because
the mesh domain of NEMORB is distributed across several cores, it requires large amounts of grid
data to be transposed across cores. Such inter-core communication naturally impairs the code’s
parallel scalability and renders, in practice, ITER-sized plasmas simulations unfeasible.

In principle, there are two possible ways to deal with this issue. Either to change the spa-
tial grid to be globally aligned with the equilibrium magnetic field, which eliminates the need
for field-alignment Fourier filtering, or to improve the way the parallel data transpose and the
Fourier transforms are done. While the former would completely eliminate the aforementioned
scalability bottleneck, it is not transparent how such an approach could be implemented in the
finite element basis used in NEMORB. It would certainly imply fundamental changes to the orig-
inal code. Conversely, the latter, even though potentially less effective, can be implemented as
an external library, with minimal changes to the original code required. Furthermore, since there
are several other codes of the EU fusion program that share the same parallel numerical kernel
with NEMORB (e.g. EUTERPE), they would also directly benefit from it. Therefore, this project
focuses exclusively on the second approach.

The bulk of the work on improving NEMORB’s 2D Fourier transform algorithm can be divided
into two main parts. Namely, the exploitation of the Hermitian redundancy inherent to its purely
real input data and the optimization of the distributed transpose algorithm. Both together should
yield speedup factors of the order of two. The corresponding steps made to achieve this improve-
ment, as well as the performance measurements made on different HPC machines are detailed
in the remaining sections of this report, which is organized as follows. Sec. II provides a basic
profiling of the original NEMORB’s 2D Fourier transform algorithm and introduces its main con-
stituent blocks, as well as the domain decomposition used. Sec. III focuses on the optimization
made on the interface between the input data (from the main code) and the library containing
the aforementioned algorithm. The changes that were made based on the Hermitian redundancy
are detailed in Secs. IV-V, where the first performance results for the whole algorithm are showed.
The comparison between the original transpose algorithms based on the XOR/MPI Sendrecv and
MPI Alltoall directives is provided in Sec. VI, where the effect of using MPI derived data types
is also assessed. Sec. VII discusses other alternative transpose methods, like the ones provided
by BLACS via the Intel MKL library and the latest versions (≥ 3.3) of the FFTW library. It
also explores the usage of the MPI Gather/Scatter directives to collect and distribute the data
as a replacement for the transpose. The concept of using the high count of zeros resulting from
NEMORB’s Fourier filtering to reduce the communication burden in the transpose algorithm is
explained and tested in Sec. VIII. Finally, a summary is provided in Sec. IX.

II. NEMORB’S 2D FOURIER TRANSFORM ALGORITHM

This section describes the fundamentals behind the NEMORB’s original 2D Fourier filtering
algorithm. This analysis constitutes the first step needed before any changes to the code are made.

A. Domain decomposition

NEMORB’s 3D spatial grid comprises the radial, poloidal and toroidal directions, discretized
with Ns, Nχ and Nφ grid-nodes, respectively. Such domain is then decomposed into Ncart sub-
domains over the toroidal direction and distributed across the same number of cores (Fig. 1),
typically as many as toroidal grid-nodes. This naturally limits the number of tasks over which
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FIG. 1. Illustration of the spatial grid parallelization of NEMORB, with the sub-domains distributed in
the toroidal direction for the case Ncart = 4.

the problem can be parallelized to Ncart = Nφ. To overcome this limit, the domain is further
decomposed into NC clones, and each of them gets 1/NC of the total number of particles [1].
This implies that the total number of parallel tasks is given by Ncart × NC. For the purposes of
this work, the filtering operations occur independently within each clone. Therefore, the following
analysis focuses on a single clone only. Since all the clones are exactly equivalent, the results herein
obtained are directly applicable to the remaining ones.

Before proceeding, a few remarks on the choice of the toroidal direction for the spatial decompo-
sition direction instead of the poloidal one are in order. Since in a tokamak the toroidal direction is
typically very close to the parallel direction, NEMORB approximates the gyro-radii, which occur in
the plane perpendicular to the magnetic field, with their projection on the poloidal plane. Hence,
all gyro-radii are local at a given toroidal location. If the domain decomposition was in the poloidal
direction instead, this would no longer be the case, as there would necessarily be some gyro-radii
shared by two adjacent domains, which would greatly increase the communication between them.
Therefore, the reason for the choice to parallelize over the toroidal angle is the minimization of
inter-core communication.

B. Multi-dimensional Fourier transforms

The basis functions for Fourier transforms are combinations of sines and cosines, which do not
have a compact support (they are not spatially localized). Therefore, for numerical calculation of
discrete Fourier transforms (DFTs), data locality is of key importance. The same obviously applies
to a multi-dimensional DFT, which directly regulates its parallelization and data distribution
concepts. In particular, an N -dimensional DFT can be obtained from N one-dimensional (1D)
DFTs computed sequentially, one for each of the N dimensions. Since, as discussed before, each
of these 1D transforms is a non-local operation, for the sake of communication efficiency, all the
corresponding input data should be locally available on the core doing the computation. For the
case of NEMORB, a 2D DFT on the toroidal and poloidal angles needs to be computed. The
toroidal decomposition of its spatial domain (Fig. 1) sets the poloidal direction as the first one
to be (1D) Fourier transformed, since the corresponding data is locally available to each core.
Subsequently, the toroidal Fourier transform must be carried out, but since the corresponding
data is now distributed across the cores, it must first be made local to each of them. This is
done with a matrix transpose that swaps the toroidal and poloidal data, as is explained next, in
Sec. II C.
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FIG. 2. Illustration of the distributed 2D FFT algorithm. It consists of a 1D FFT along the poloidal
(local) direction, followed by a transposition between poloidal and toroidal (distributed) directions and
lastly by a 1D FFT in the toroidal direction.

C. XOR/MPI Sendrecv distributed transpose algorithm

The original NEMORB’s distributed matrix transpose algorithm, written by Trach-Minh Tran
(Centre de Recherches en Physique des Plasmas – CRPP), implements the necessary all-to-all
communication pattern via a pairwise exchange algorithm. First, the (Nχ ×Ns ×Nφ/Ncart)-sized
data local to each core, represented by the slabs in Figs. 1 and 2, is sub-divided into as many
sub-blocks or “pencils” as there are toroidal sub-domains (cores), i.e. Ncart. This corresponds
to the blue cuts in Fig. 2, which yield sub-blocks of size Nχ/Ncart × Ns × Nφ/Ncart. Then, an
“exclusive or” (XOR) condition establishes the exchange pattern of the sub-blocks across all cores.
Excluding the diagonal sub-blocks for simplicity, since they stay local to the core they belong to
initially, this pattern yields a set of (Ncart − 1) × Ncart/2 pairs of sub-blocks to be swapped, as
illustrated by the red arrows in Fig. 2. Furthermore, these pairs are organized into Ncart sub-
groups in a non-overlapping manner. Therefore, the point-to-point data exchanges corresponding
to all pairs within such a sub-group can proceed in parallel through MPI Sendrecv calls, without
race conditions. After sequentially going through all these Ncart sub-groups of pairs, the whole
matrix transpose is achieved. This yields an extremely efficient all-to-all communication algorithm,
at least for the problem sizes under consideration within this work, as shall be seen later in this
report. As a limitation, stemming from the pair-wise organization of its communication pattern,
this method implies the use of powers-of-two for the domain decomposition, and hence for the grid-
count. In practice, this constitutes no drawback in NEMORB since these are the optimum array
sizes for fast Fourier transforms. Moreover, it should be mentioned that there is in NEMORB an
alternative transpose pattern based on the modulo function, which is meant for non-power-of-two
cases, but which was not tested within this project.

The internals of the XOR/MPI Sendrecv transpose method are revisited in detail in Sec. VII,
when alternative MPI collective communication directives are discussed. Further details are also
given in Sec. VIII B, within the framework of using NEMORB’s Fourier filtering to exclude some
of the communication-pairs from the full exchange pattern, such to yield a more efficient tailored
distributed transpose.

D. Basic algorithm profiling

Before proceeding to the optimization of the algorithm in hand, it is necessary to measure the
cost of each of its components. The major ones have already been presented in the previous two
sections, but an overview of all the steps involved is still missing. This is the purpose of the
following lines.

The initial step prepares the input data to be Fourier transformed. Since it corresponds to
the right-hand side of the Poisson equation, it is therefore real-valued. Because the complex-to-
complex (c2c) Fourier transform algorithm is used, the real-valued input data array is copied to a
new complex array with the same size and imaginary part set to zero. Additionally, it has the first
and second indexes exchanged, from the original order (s, χ, φ) to (χ, s, φ). The reason for this
is simply that NEMORB’s subroutines performing the 2D DTFs act on the 1st and 3rd indexes
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of a 3D complex array. This operation of index-swapping amounts in practice to a local matrix
transposition (all the data is locally available) and constitutes the first place where optimization
can be applied. The relative cost of this compared to the whole algorithm can be checked in the
profiling Table I, where it corresponds to the Reord entry. The next steps involve calculating the
Fourier transforms. First in the poloidal (local) direction for all radial and toroidal grid-nodes.
This is done via a standard c2c fast Fourier transform (FFT, a particularly efficient method to
calculate DFTs for power-of-two sized arrays [2]) and called FTcol1 in Table I. The result is stored
in a 3D complex matrix with size Nχ × Ns × Nφ that is distributed across Ncart cores over the
last dimension. It further needs to be Fourier transformed in the toroidal direction, but since
the corresponding data is now distributed, it must first be made local to each core. Such task is
achieved using the transpose algorithm outlined in Sec. II C, which in Table I is denominated by
Transp. The resulting transposed 3D complex matrix with size Nφ × Ns × Nχ, also distributed
across Ncart cores over the last dimension (here the poloidal direction), can now be efficiently
Fourier transformed in the toroidal direction using the same c2c FFT algorithm as before. Its
cost is measured by FTcol2 in Table I. To have a more pictorial idea about the bulk part of the
algorithm, Fig. 2 schematizes the last three steps just described in this paragraph.

                             Inclusive                    Exclusive
Subroutine  #calls  Time(s)      %     MFlops    Time(s)      %     MFlops
--------------------------------------------------------------------------
Main           1     72.392   100.0   614.469      0.014     0.0     4.990
:Reord       500      5.690     7.9     0.002      5.690     7.9     0.002
:FTcol1      500      8.303    11.5  2745.803      8.303    11.5  2745.803
:Transp      500     47.634    65.8     0.199     47.634    65.8     0.199
:FTcol2      500      7.357    10.2  2803.278      7.357    10.2  2803.278
:Normal      500      3.395     4.7   310.034      3.395     4.7   310.034

TABLE I. Performance measurement of NEMORBs original 2D FFT algorithm on a typical ITER-sized
spatial grid Nχ = 2048, Ns = 512 and Nφ = 1024, distributed over 1024 cores on HPC-FF. The “hotspot”
is the distributed transpose, highlighted in red.

Table I shows the performance measurement of the algorithm when executed 500 times on
a typical ITER-sized spatial grid, Nχ = 2048, Ns = 512 and Nφ = 1024, distributed across
1024 cores on the HPC-FF machine, at the Jülich Supercomputer Centre (JSC). Clearly, the
distributed matrix transpose represents the most significant part (65%) of the whole time cost of
NEMORBs 2D FFTs. This percentage can even increase for smaller exchange block array sizes,
as shall be discussed in more detail later. Since this part is mostly inter-core communication
(note the negligible MFLOPs compared to the 1D FFTs), it implies that the whole algorithm
is communication-bound. Most of the optimization effort has to be put there, either directly or
indirectly. Nevertheless, since the index-swapping part (Reord) offers complementary room for
improvement, that shall be the starting point addressed in the remaining text.

III. INDEX ORDER SWAPPING: LOCAL TRANSPOSE

The index order of the data in the main NEMORB code is (s, χ, φ), but its Fourier transform
subroutines require (χ, s, φ). In practice, this amounts to performing a local transpose between
indexes 1 and 3 on the code’s 3D data array, which is done in the original code via two nested
DO-loops. Such method is compared to both FORTRAN intrinsic and Intel MKL (mkl domatcopy)
local transpose counterparts for several matrix sizes. The former comparison yielded similar figures
(not shown here) for both methods for matrices with 500×500 to 2000×2000 elements. The latter
comparison is exemplified in Fig. 3, which shows the results obtained for the same matrix-size
range on HPC-FF at the JSC. It shows the speedup achieved when using the MKL transpose over
the nested DO-loops on real-valued data matrices.

For these matrix sizes, which are in the range of the ones used in NEMORB for an ITER-sized
simulation, the MKL transpose is always faster. However, it should be noted that this result is not
generalisable for all matrix sizes. The speedup pattern can be quite complex, with degradation or
even slowdown occurring for specific matrix sizes. Two final remarks in this topic are in order.
The first addresses the fact that a real-array is used here for the tests and not a complex one, as
the material in Sec. II D might have suggested. The reason provides a hint to the material of the
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FIG. 3. Intel MKL (v10.2.5) local transpose (mkl domatcopy) speedup relative to a DO-loop transpose
(ratio of the time cost of the latter over the former).

next section, namely, the use of real-to-complex (r2c) FFTs to improve both CPU and memory
efficiency. The second remark relates to eventual cache-line trashing due to usage of powers-of-
two-sized arrays [3]. No tests were made regarding this subject, but the suggestion to do so in the
future is left here.

IV. FOURIER TRANSFORM OF REAL DATA: HERMITIAN REDUNDANCY

As already hinted in Sec. III, the optimization plan for NEMORB’s Fourier transforms invokes
the Hermitian redundancy inherent to its real-valued input data (right-hand side or source term
of Poisson’s equation). Specifically, the idea is to use the following property. Given a N -sized
real-valued discrete data series fk with the integer domain-index k ∈ [0, N −1], its discrete Fourier
transform

Fn =

N−1∑
k=0

fke
2πikn/N (1)

exhibits the following symmetry

F ∗
N−n = Fn (2)

where the asterisk represents the complex conjugate and n ∈ [0, N − 1] is the frequency or mode
index. Such symmetry implies that the DFT can be unequivocally represented with only N/2 + 1
independent complex values, as illustrated in Fig. 4. Taking this property into account allows
to calculate DFTs of real data in a more efficient manner compared the full c2c transform, both
memory- and CPU-wise.

F0 “ F0̊ F4 “ F4̊ F5 “ F3̊ F6 “ F2̊ F7 “ F1̊F1 F2 F3

+ N “ 8 complex numbers

+
independent complex numbersN{2 ` 1 “ 5

real numbers

FIG. 4. Illustration of the Hermitian redundancy of the discrete Fourier transform of real valued data with
size N = 8.
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In NEMORB, the Hermitian redundancy can be used in the first array index to be Fourier
transformed, namely, the poloidal direction (χ). This effectively reduces the number of needed
FLOPs by roughly a factor of two. The same applies to the size of the transformed stored data-
set, which for the Nχ-sized real-valued input array, falls from the full Nχ complex Fourier modes to
a Nχ/2+1 subset of them. The subsequent Fourier transform, in the toroidal direction (third array
index), acts upon the already poloidally Fourier transformed data, which is complex. Therefore, it
no longer exhibits the Hermitian redundancy and so, for each poloidal Fourier mode, the full c2c
toroidal Fourier transform has to be carried out. However, since the number of poloidal Fourier
modes was cut by roughly a half before, so is the number of c2c toroidal Fourier transforms that
needs to be calculated. Together this leads to an expected speedup factor of two for the whole of
the Fourier transform operations (excluding the transpose) in NEMORB’s 2D filtering algorithm.

In practice, there are two possibilities to use the Hermitian redundancy in the poloidal direction.
Either (i) store two poloidal (real) arrays as the real and imaginary parts of a same-sized complex
array, compute the complex FFT and use the symmetry relations Eq. (2) to separate the two
transforms, or (ii) store one poloidal array in an half-sized complex array in an appropriate manner
(even indexes go to the real part, and odd indexes go to the imaginary part), compute the complex
FFT and use the symmetry relations above to separate the two transforms. In terms of floating
point operations, they are both equivalent, but they affect differently the distributed transpose.
The former computes two poloidal arrays simultaneously, so it effectively reduces the matrix size
to be transposed from the original Nχ ×Ns ×Nφ to Nχ ×Ns × (Nφ/2 + 1). The latter stores the
first 1D FFT in a half-sized complex array (half-complex format), so the matrix being transposed
is now roughly of size (Nχ/2 + 1)×Ns ×Nφ. While the former approach is more straightforward
to code, it needs at least two poloidal arrays to be local at each core, preventing the cases with
Ncart = Nφ, which is undesirable. The second method does not suffer from this issue, so it was
chosen. Besides, since it is readily available in standard FFT libraries (e.g. FFTW and Intel MKL),
there is no need to implement it explicitly. One simply calls the real-to-complex (r2c) transforms
of such libraries.

As mentioned already, a direct consequence of using half-complex poloidal Fourier transforms is
that, due to the effective reduction in the size of the data-set, less information needs to be exchanged
across cores. Therefore, a similar two-fold performance gain is expected from the distributed matrix
transposition part of the algorithm. Putting everything together, including the index swapping
optimization described in Sec. III, leads to the performance results shown in Fig. 5 for the whole
2D FFT algorithm. This plot shows the scaling speedup factors achieved with the new method
compared to the original one, on a grid count of 2048 × 512 × Ncart, in the poloidal, radial and
toroidal directions, respectively, which keeps the amount of data per core constant. Therefore,
these are pure weak scaling studies for the communication part of the algorithm (transpose), but
not for the computing cost since the amount of work load per core varies as the size of the toroidal
FTs increases with Ncart. This defines the meaning of semi-weak scaling in the following. The
measurements were made on the HPC-FF machine at JSC.

The several components involved in the algorithm are measured separately. The two main ones
are the FFT calculations on both angles (green) and the parallel transpose (red). The blue line
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FIG. 5. Semi-weak scaling speedup (ratio between elapsed times) factors achieved on HPC-FF for each
component of the 2D FFT algorithm when using the half-complex representation for the poloidal direction.
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represents the local index-order swapping of the input data array that was discussed in detail in
Sec. III. The yellow line represents the overall speedup factor. It follows closely the red line since,
as shown in Table I, the transpose represents the main part of the overall computational costs.
Up to 256 cores a factor of two is gained, but beyond that degradation is observed. The reason is
that this method requires zero-padding in the poloidal direction to be compatible with the parallel
transpose algorithm. The latter requires the poloidal direction of the matrix being transposed to
be divided into Ncart blocks. Therefore, its number of rows must be a multiple of the number of
cores (Ncart), and when that is not the case, extra rows of zeros must be added. Knowing that
the number of rows is given by Nχ/2 + 1, due to the Hermitian redundancy, for small Ncart such
condition is easy to fulfill with a small number of extra rows of zeros. As Ncart gets bigger, more
and more zero-padding is necessary, as the light-blue curve shows. It measures the ratio between
the number of extra zero rows added and the original Nχ/2 + 1 size. In the limiting case of
Nχ = Ncart = 1024, one needs to add 1023 extra rows of zeros to the initial Nχ/2 + 1 = 1025 rows,
for a total of 2048 rows. This is the same size as the original matrix that neglects the Hermitian
redundancy. Hence, for this case there should be no speedup of the transpose algorithm, as the
red curve confirms. However, it is important to realize that the zero-padding is, in most cases,
simply due to the extra element on top of the remaining Nχ/2 elements that make the Hermitian
half-complex representation. For instance, without this extra array element, there would be no
need for zero-padding up to Ncart = 1024 for the same poloidal grid-count (Nχ = 2048). This is
the basis behind the work-around for this issue, which is described in the next section.

V. HALF-COMPLEX PACKED FORMAT TO AVOID ZERO-PADDING

As seen before, the Hermitian redundancy was used in NEMORB to improve the performance
of its original 2D Fourier transforms by a factor of two. However, in the most general case, this did
not hold due to the zero-padding needed by the transpose algorithm. This section explains how
such can be circumvented invoking another property of the Hermitian redundancy, namely, that
for even N , which is the case for NEMORB, the zero (F0) and Nyquist (FN/2+1) Fourier modes
are purely real. Therefore, without any loss of information, the real part of FN/2+1 can be stored
in the imaginary part of F0, as illustrated in Fig. 6. This is called half-complex packed format and
allows to reduce the number of elements in the poloidal direction by one, from Nχ/2 + 1 to Nχ/2.
Converting to this storage format before performing the transpose effectively avoids the need for
zero-padding (provided that Nχ > Ncart) and should therefore eliminate the degradation seen in
Fig. 5 for high numbers of MPI tasks.

+ independent complex numbersN{2 ` 1 “ 5

real numbers

pFR0
, 0q pFR4

, 0qpFR1
, FI1

q pFR2
, FI2

q pFR3
, FI3

q

N “ 8

+
complex numbers (no information loss)N{2 “ 4

pFR1
, FI1

q pFR2
, FI2

q pFR3
, FI3

qpFR0
, FR4

q

FIG. 6. Illustration of the half-complex packed format.

Obviously, after the data transposition, before the second (toroidal) Fourier transform can be
computed, the data must be converted back to the “un-packed” half-complex format. Since the
poloidal direction is at this stage distributed across different cores, this task requires an additional
point-to-point communication between core rank 0, which needs to send the FN/2+1 value to core
Ncart − 1, where it should be stored. This is done with an additional call to the MPI Send and
MPI Recv directives at no significant relative extra cost, as shall be seen next. As a final remark,



9

it should be mentioned that, naturally, all the cases with Nχ ≤ Ncart need zero-padding when
the Hermitian redundancy is used, even with packed format representation. The reason is simply
that for those cases, Nχ/2 is always smaller that Ncart and to use the parallel transpose algorithm,
Ncart−Nχ/2 rows of zeros need to be added. Hence, no speedup is expected for such spatial domain
distribution settings. These are, however, uncommon in tokamaks, where the typical poloidal to
toroidal field winding ratio is larger that one (q > 1), which implies Nχ > Nφ and therefore also
Nχ > Ncart.

Using the half-complex packed format on the same example of Sec. IV (Nχ = 2048, Ns = 512
and Nφ = Ncart) requires no zero-padding up to Ncart = 1024 cores. The reason being simply
that Nχ/2 = 1024 is always a multiple of Ncart, provided that the latter is a power of two, as
is always the case in NEMORB. The semi-weak scaling study of Fig. 5 was repeated under these
circumstances. Since the changes affect only the transpose part of the algorithm, which moreover
is its bulk piece cost-wise, the comparison of the corresponding total curves is sufficient, as shown
in Fig. 7. As expected, the total speedup is always the same or higher (green curve) than before
(yellow curve), even for the cases that originally required very small zero-padding percentages.
This means that the overhead communication costs related to the packed format conversion are
negligible. For higher numbers of cores (Ncart), which before required a substantial amount of
zero-padding, the gain is clear and arises from having less amount of communication to do (smaller
matrices to transpose). Still, for the two highest Ncart values, there is a degradation of the two-fold
speedup. This can not be attributed to the matrix size increase (relative to the original full-complex
matrix), as there is no zero-padding involved in these cases whatsoever.
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(yellow) the half-complex packed format representation for the poloidal direction on HPC-FF. The former
is the same as the “Total” curve in Fig. 5.

The observed degradation is related network limitations of the underlying system. Two factors
might contribute to this problem. To understand them lets first recall that, as explained in Sec. II C,
both (i) the number of pairs of sub-blocks (“pencils”) which are exchanged simultaneously in
parallel and (ii) the number of times this exchange operation has to be sequentially performed to
achieve the full distributed transpose increase linearly with Ncart. The former naturally implies an
increase in the probability of network congestion (collisions) with Ncart, which effectively decreases
the network bandwidth. The latter implies an accumulation of latency proportional to Ncart.
Moreover, since the size of the sub-blocks being transposed decreases accordingly (they’re given by
Nχ/Ncart×Ns×Nφ/Ncart), the higher the core-count is, the higher the ratio between latency time
to the time spent on the actual transfer becomes. On a given machine, when this ratio approaches
unity, the algorithm reaches its scaling saturation.

To further clarify the mechanism is responsible for the results of Fig. 7, the same experiment is
repeated with different matrix sub-block sizes. The angular grid-count is kept unchanged (same
as in Figs. 5 and 7) but the radial grid count varied between 1 and 1024. The results are gathered
in Fig. 8, where the corresponding speedup factors for the parallel transpose on semi-weak scaling
tests are presented. It is clear that, for the smallest matrix sub-blocks (lighter curve), the speedup
degradation occurs the soonest, indicating that the communication latency times dominate over
the reduction of the number of matrix rows due to the Hermitian redundancy. Therefore, it can be
concluded that the degradation observed for the smaller message sizes is mostly due to the latency
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times, which are inherent to any inter-core communication.
Conversely, increasing the matrix sub-block sizes decreases the sensitivity of the results to the

latency accumulation, which delays the speedup degradation. Indeed, the biggest matrix sub-block
size case (darker curve) yields a transpose speedup larger than 1.8 (on HPC-FF), for Ncart = 1024,
which is much closer to the expected theoretical two-fold speedup. However, this is not conclusive
with respect to the possible role of network congestion. For that the absolute execution time
values need to be inspected for a wider set of the bigger message sizes, which increase the effect of
collisions. This subject shall be revisited in Sec. VII.

At the time these tests where made, the HELIOS machine, at the Computational Simulation
Centre of International Fusion Energy Research Centre (IFERC-CSC) in Aomori, was not yet
available for production, so the same tests could only be repeated on that machine later on. This
topic shall be revisited in the remaining text. For the time being, the results presented so far serve
as motivation to experiment with alternative distributed transpose algorithms, which might be less
prone to network latency issues. This is the material covered in the next few sections.
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FIG. 8. Semi-weak scaling of the speedup dependence on the radial grid size (Ns), when using the FFT
half-complex packed format for the poloidal direction. The values Ns ∈ {1, 128, 512, 1024} are used.

VI. DISTRIBUTED TRANSPOSE: XOR/MPI SENDRECV VS. MPI ALLTOALL

NEMORB’s original XOR distributed matrix transpose algorithm was already explained in some
detail in Sec. II C and its scaling performance measured in Sec. V. There, it was found that,
depending on the machine architecture being used, this algorithm can be affected by network
latency and/or congestion when large numbers of cores (of the same order of the toroidal grid-
count) are used. This motivates the use of alternative methods to perform the same task. The most
obvious one invokes the MPI Alltoall directive of the MPI standard, which establishes the all-to-
all communication pattern and performs the message passing automatically. To be able to use it
in the simplest way, the sub-blocks to be exchanged across cores need to be stored continuously
in memory. This is obviously not the case for the problem in hand, where the corresponding sub-
blocks are 3D “pencils”. Therefore, two possibilities are available. Either to use temporary buffer
arrays, where the data for each sub-block is stored continuously before being communicated, or to
create a new data type which specifies the memory access pattern to the sub-blocks in a continuous
manner. Both have been investigated and are described below.

The first solution is the simplest to implement. All that is needed is to create a temporary
copy of the sub-blocks onto a 4D buffer array that stores them sequentially. Another 4D buffer
array is necessary to receive the data after being acted upon by the MPI Alltoall directive. The
final step involves extracting the data from the second 4D buffer and putting it with the correct
memory layout on the output 3D transposed matrix. Such a standard algorithm has been already
implemented in NEMORB before. The source code originally written by Trach-Minh Tran (CRPP)
was kindly provided by Paolo Angelino (CRPP) and it could, therefore, be used straightforwardly,
with only minor adaptations required to comply with the new Hermitian reduced method.

The second solution aims at generalizing the previous method to avoid the need for explicit use
of temporary storage buffers, leaving that task to the internals of the MPI library implementation.
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This can be achieved via the most flexible MPI derived data type, namely, the structure type, ac-
cessible via the MPI Create data struct directive. Passing it as an argument to the MPI Alltoall
directive allows it to read (write) directly the original 3D input (output) sub-blocks, with the even-
tual needed data buffering being handled “under the hood” by the MPI library. This is therefore
expected to be more efficient, though it will be seen in the following paragraphs that this is not
always necessarily the case. Once more, this method has been previously written by Trach-Minh
Tran and the corresponding NEMORB’s source code was also provided by Paolo Angelino (CRPP).
Additional debugging was necessary to have it working according to the MPI2 standard. The cor-
responding sub-routines ended up being completely re-written, but the basic original structure was
kept. Another change was introduced to create the MPI derived data types just the first time the
distributed transpose is performed, to avoid unnecessary accumulation of overhead. Subsequent
calls to the routine simply re-use the same derived data type, which does not change in time.

The very same principles can be applied to the XOR/MPI Sendrecv method, which also uses
temporary storage buffers to hold a single input (output) sub-block before (after) it is communi-
cated with the MPI Sendrecv call. Here the overhead involved in copying the temporary buffers
is, in principle, less significant than within the MPI Alltoall method, since they are much smaller
and therefore have better chances to fit in the cache memory. Nevertheless, avoiding this explicit
task could also be beneficiary in this case, so this method was implemented and tested along with
the others.
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FIG. 9. Strong scaling of the distributed transpose on a grid-count of Nχ = 2048, Ns = 512 and Nφ = 1024
for the different transpose methods described in the main text. The results are shown for the HPC-FF
(JSC), VIP (RZG) and HELIOS (IFERC-CSC) machines.

The transpose methods before are tested on a fixed grid-count of Nχ = 2048, Ns = 512 and
Nφ = 1024, which is representative of NEMORB’s spatial grid for an typical ITER simulation.
A strong scaling study, obtained by distributing the same problem on different numbers of cores,
is made on different HPC platforms, namely, the HPC-FF (JSC) with Intel Nehalem CPUs and
InfiniBand interconnect, the IBM Power6 VIP (RZG) and the, meanwhile available, HELIOS
(IFERC-CSC), which uses Intel Sandy-Bridge CPUs with InfiniBand interconnect. On the last, two
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different MPI library implementations are used, namely, the default BullX MPI and the alternative
Intel MPI. The results are gathered in Fig. 9, where each point on the graph represents the time it
took to perform the transpose of the 3D grid (between the poloidal and toroidal directions, Fig. 2)
followed by the corresponding back transpose, repeated a thousand times.

The XOR/MPI Sendrecv method with temporary storage buffers is used in three variants. The
first of them acts upon the original Hermitian redundant c2c Fourier transformed data. It yields
the grey curves labeled “c2c XOR”, which give the reference data, since they correspond to the
original method. The second variant is given by the blue curves labelled “r2c XOR (unpacked)”.
They correspond to the Hermitian reduced data yielded by the r2c poloidal FFT, padded with
zeros until the condition Nχ/2 + 1 being a multiple of the number of cores Ncart is fulfilled, as
explained in Sec. IV. Since Nχ = 2048, having Ncart = 1024 cores requires padding with 1023
zeros, yielding a transpose as big as the one of the original Hermitian redundant data. This is the
reason why both these methods cost the same for that number of cores on all machines. The third
variant yields the red curves, labeled “XOR r2c”, correspond to the same method remedied with the
half-complex packed format of Sec. V, which avoids the zero-padding. The light-blue curves labeled
“XOR Dtype” use an MPI derived data type to avoid the explicit temporary storage buffers. The
remaining curves correspond to the two MPI Alltoall variants applied to the Hermitian reduced
data only. The green curves labeled “r2c Alltoall” use the temporary storage buffers, whereas the
yellow curves labeled “r2c Alltoall Dtypes” use instead MPI derived data types.

All the curves displayed correspond to the best case out of ten runs made for each point in
the plots. If all the data were to be plotted, quite some scatter would show, indicating that,
as expected, the communication involved in this algorithm is indeed quite intensive. The overall
performance depends on the machine load during the run, as well as on the physical location of the
computer nodes involved in the transpose relative to each other. More distance implies naturally
more time cost.

The first and most important conclusion to be drawn from the plots in Fig. 9 is that, barring
the VIP case that uses a different architecture (IBM Power6), the most efficient method seems
to be the half-complex packed XOR/MPI Sendrecv already used in the previous section, that is,
the red curves labelled “XOR r2c”. Additionally, among the cases that use the MPI Alltoall
directive, it is the derived type variant (yellow curves) which performs best, as was expected.
This method even yields the best overall results on VIP. Conversely, for reasons which are not
transparent, the opposite happens on HPC-FF, where this method is even slower than the original
full-complex transpose (grey curve). Together with the less performant derived data type variant
of the XOR/MPI Sendrecv algorithm on this machine, they seem to indicate that using derived
data types within the ParTec MPI distribution available on HPC-FF is not the most efficient way
to go. As such, whether or not using derived data types makes sense from the performance point
of view depends strongly on the MPI implementation available on a given machine.

Another important point is that, loosely speaking, the general shape of the strong scaling curves
on HPC-FF and HELIOS is rather similar, especially when compared to the VIP’s counterparts.
From the machine architecture point of view, this is the expected behavior. Nevertheless, in
absolute terms, the fastest results were obtained on HPC-FF. Switching from the default BullX
MPI (v1.1.14.3) implementation to the Intel MPI (v4.0.3) one on HELIOS did not change
this picture. Specifically, taking the largest number of cores used in the study (Ncart = 1024),
the same task took 203 s on Bullx MPI and 186 s on Intel MPI, but only 151 s on ParTec MPI
(v5.0.26-1) on HPC-FF. These results were not initially expected, considering the similarity of
the architectures on both HPC machines and that HELIOS has more recent hardware. In reality,
a more detailed analysis of the issue revealed that this difference is related initialization costs
for the all-to-all communication pattern. This renders the interpretation of such cross machine
comparisons impaired, and for that reason, a detailed study of the issue was conducted in parallel
elsewhere [4], [5, chapter 4 and 9]. Here it suffices to mention that the communication initialization
costs are subtracted from what remains of the scaling studies shown in this report.

In sum, the answer to which is the best transpose method is not absolute. It is machine and/or
MPI distribution dependent. Nevertheless, the XOR/MPI Sendrecv transpose with temporary
storage buffers on Hermitian reduced (packed) data (red curves) seems to be the algorithm with
the most consistent performance across the machines used for this study, and is, as such, suggested
as the default method. The speedup measurements made relative to the original full-complex
algorithm yielded values of about 1.5, 1.7 and 2.0 for HPC-FF, VIP and HELIOS, respectively.
For the VIP machine, the best method is the MPI Alltoall with MPI derived types (a speedup
of 2.4 was reached), contrary to HPC-FF, for which this is the worst one (even worse than the
original Hermitian redundant method). As to the question of the latency effect seen before, which
motivated the use of different transpose algorithms in the first place, it seems that it has a stronger
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impact on HPC-FF (curves start to flat out for higher numbers of cores) than on the other two
machines.

VII. ALTERNATIVE METHODS

This section starts with the general conclusion of the previous one, namely, that the MPI Alltoall
directive is not superior to the XOR/MPI Sendrecv counterpart for the transpose problem-sizes
under consideration. The follow-up investigations attempt to further find better alternatives to
perform this task. Firstly, two additional transpose algorithms are considered, namely, from
FFTW3.3 and BLACS/ScaLAPACK (via Intel MKL) libraries. Their performance measurements
revealed that they are not competitive with the previous algorithms in hand. The corresponding
results for both HELIOS and HPC-FF machines are shown in Sec. VII A. Another paradigm is
attempted using the MPI Gather/Scatter collective communication directives. They pass the
messages via hierarchical trees, using neighboring cores to help propagate them in a ’divide and
conquer’ manner. Even though this is much more efficient than point-to-point communication pat-
ters, the blocking nature of this directive prevents good scaling properties when used to perform
distributed matrix transpositions. This is the subject of Sec. VII B.

A. Transposes from FFTW and MKL libraries

Two additional parallel transpose algorithms are added to the set already tested before
(Sec. VI). These come from the FFTW library and the Intel MKL implementation of the
BLACS/ScaLAPACK library. For testing purposes, a simpler 2D version of the transposes is
implemented, which in NEMORB’s language, corresponds to considering a spatial domain with a
single radial surface. They are compared to the 2D version of two of the methods implemented
before, namely, the XOR/MPI Sendrecv and the MPI Alltoall, both without using derived data
types (red and green curves in Fig. 9). This choice is based on the overall performance of the
former and the close relation of the latter to the FFTW3.3 transpose algorithm.

The test cases correspond to a matrix size of Nχ × Nφ = 327682, parallelized over the second
dimension. So, on a given number of cores Ncart, each core holds Nχ×(Nφ/Ncart) of the input data
and Nφ× (Nχ/Ncart) of the transposed data. This choice yields a similar effective data-size to the
nominal 3D ITER-case of the previous sections. The transpose and back-transpose are performed
a 101 times, but only the last 100 are measured. This effectively discards both MPI Init and
transpose related all-to-all communication initialization costs. The reason for this is the excessive
values yielded by the HELIOS machine for this task at the time this report was written, which
would masquerade the actual cost of the transpose, as already briefly discussed in Sec. VI. The
figures obtained on HELIOS and HPC-FF on 1024 cores are listed in Table II. They correspond
to the best results out of at least three simulations.

XOR Alltoall FFTW3.3 MKL MKL (impi)

HELIOS 14.4 s 25.2 s 46.1 s 839.6 s 1232.8 s

HPC-FF 12.9 s 41.2 s 25.6 s 1166.9 s -

TABLE II. Time spent by the different transpose algorithms to perform 100 pairs of transposes and back-
transposes of a 327682 matrix on 1024 cores, excluding communication initialization costs. On HELIOS,
the Intel Fortran compiler (v12.1.1) and the libraries FFTW (v3.3) and MKL (v10.3.7) were used with
BullxMPI (v1.1.14) for all results, except the last column one, for which the Intel MPI (v4.0.3) was used.
On HPC-FF, the Intel Fortran compiler (v12.1.1) and the libraries the MKL (v10.2.5) and Partec MPI
(v5.0.26-1) were used.

Clearly, there is no advantage in using either FFTW’s or the MKL’s distributed transpose
algorithms for the cases under consideration. The latter even proved to be more than two orders
of magnitude slower than its counterparts, which was somewhat surprising. A strong scaling study
comparing this method with the XOR/MPI Sendrecv revealed its poor scaling properties, which
explains the corresponding figures in Table II. These results, represented in Fig. 10, were measured
on HPC-FF. Similar figures were obtained on HELIOS.

It is also noteworthy that the input matrix data used is real-valued, not complex, as one would
need for NEMORB, since the transpose takes place after the poloidal FFT is computed. The reason
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FIG. 10. Strong scaling of the XOR/MPI Sendrecv and MKL’s BLACS/ScaLAPACK transposes on HPC-FF.
100 pairs of transpose and back-transpose of a 327682-sized matrix are measured, excluding communication
initialization times.

for this is that having FFTW’s distributed transpose, which uses the Fortran ISO C bindings,
working with complex numbers turned out to be harder than expected. Although stated in the
manual that it can be done using “tuples”, the attempts made have failed. This together with the
not very encouraging performance results obtained implies that no further investment is made in
this topic. For essentially the same reason, no big effort is put into developing the 3D counterparts
of these transpose algorithms to mimic the actual NEMORB’s grid-count. Moreover, the MKL
case, which uses matrix descriptors within BLACS/ScaLAPACK that expect 2D matrices, makes
it very hard (perhaps even impossible) to have an efficient 3D version of the transpose. In this
case, one has to perform each 2D transpose separately, and repeat the process for each grid-point
in the third dimension. This is obviously very inefficient compared to the remaining methods,
which carry the whole third dimension when the 2D transpose is calculated. The MKL 3D tests
made on HELIOS with NEMORB’s nominal ITER grid-count (Nχ = 2048, Ns = 512, Nφ = 1024)
reveal a slow down of more than three orders of magnitude compared to the other methods, as one
would expect from the previous considerations.

B. Alternative to the transpose: MPI Gather/Scatter directives

In the context of NEMORB’s 2D FFT algorithm, the distributed matrix transposes are invoked
to make the distributed angular data locally available, such that it can be efficiently Fourier
transformed. The same goal can be achieved using instead a sequence of consecutive calls to
MPI Gather or MPI Scatter, one for each task. These collective communication directives are
done very efficiently by the MPI libraries. They pass the messages via hierarchical trees, using the
neighbor cores to help propagate them. In the case of a gather (scatter), such communication tree
is used to avoid doing a point-to-point communication between the core receiving (sending) the
total message and all the remaining ones sending (receiving) their corresponding partial messages.
Doing so increases on average the message size (which is good in terms of network latency) and
decreases the number of steps needed for the full operation from O(N) to O(ln2N), yielding bigger
improvements the larger the array size N is. The gather/scatter algorithm shares the local data
layout with its XOR counterpart. Namely, the local data is sub-divided into as many 3D sub-
blocks (“pencils”) as there are sub-domains (cores), as schematized in Fig. 2. The communication
pattern is different, though. Taking the gather algorithm as the example (the scatter counterpart is
completely equivalent), the different sub-blocks are gathered by the core whose MPI rank (plus 1) is
equal to their row index (e.g. core zero gathers locally the first row of sub-blocks, core one gathers
locally the second row of sub-blocks and so on). This has deep implications on the scalability of the
algorithm, since when a core gathers its corresponding distributed sub-blocks, the message path
involves all remaining cores. The next core can only start to gather its corresponding sub-blocks
once the first one is finished, otherwise there would be race conditions (concurrent message paths).
This can be regarded as a sort of a serially blocking communication pattern. On one hand, the
efficiency of the hierarchical tree involved in a single gather communication can be inferred from



15

one-to-one

onto map

El
em

en
t 

in
de

x 
i (

po
lo

id
al

)

Core rank j (toroidal)

XOR exchange pattern

0 1 2 3 4 5 6 7

1 0 3 2 5 4 7 6

2 3 0 1 6 7 4 5

3 2 1 0 7 6 5 4

4 5 6 7 0 1 2 3

5 4 7 6 1 0 3 2

6 7 4 5 2 3 0 1

7 6 5 4 3 2 1 0

0 1 2 3 4 5 6 7

5
2

6
3

0
7

4
1

5
2

6
3

0
7

4
1

0 1 2 3 4 5 6 7

Core rank j (toroidal)

Su
b-

bl
oc

k 
in

de
x 

i (
po

lo
id

al
)

Data-set

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7

2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7

3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7

4,0 4,1 4,2 4,3 4,4 4,5 4,6 4,7

5,0 5,1 5,2 5,3 5,4 5,5 5,6 5,7

6,0 6,1 6,2 6,3 6,4 6,5 6,6 6,7

7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7

0 1 2 3 4 5 6 7

5
2

6
3

0
7

4
1

5
2

6
3

0
7

4
1

0 1 2 3 4 5 6 7

pair 0 pair 1 pair 2 pair 3

one-to-one

onto map

El
em

en
t 

in
de

x 
i (

po
lo

id
al

)

Core rank j (toroidal)

XOR exchange pattern

0 1 2 3 4 5 6 7

1 0 3 2 5 4 7 6

2 3 0 1 6 7 4 5

3 2 1 0 7 6 5 4

4 5 6 7 0 1 2 3

5 4 7 6 1 0 3 2

6 7 4 5 2 3 0 1

7 6 5 4 3 2 1 0

0 1 2 3 4 5 6 7

5
2

6
3

0
7

4
1

5
2

6
3

0
7

4
1

0 1 2 3 4 5 6 7

Core rank j (toroidal)

Su
b-

bl
oc

k 
in

de
x 

i (
po

lo
id

al
)

Data-set

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7

2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7

3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7

4,0 4,1 4,2 4,3 4,4 4,5 4,6 4,7

5,0 5,1 5,2 5,3 5,4 5,5 5,6 5,7

6,0 6,1 6,2 6,3 6,4 6,5 6,6 6,7

7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7

0 1 2 3 4 5 6 7

5
2

6
3

0
7

4
1

5
2

6
3

0
7

4
1

0 1 2 3 4 5 6 7

pair 0 pair 1 pair 2 pair 3

FIG. 11. Illustration of the map between the data-set (left) and the XOR communication pattern (right)
for Ncart = 8. The numbers in the latter specify simultaneously the i-index of the data sub-block to be
exchanged and the core j-rank it goes to. The correspondence between the second (upper) and third
(lower) rows of the exchange pattern (right) and the actual data-set exchange pairs (left) is highlighted in
color. The non-concurrency between these pairs can be confirmed. The same applies to exchange pairs
yield by the remaining rows of the exchange pattern (not shown here).

the performance achieved by this method within a small number of cores. Indeed, as shown in
Fig. 12, this method is superior to the XOR counterpart within a single compute node (Ncart = 16).
On the other hand, for higher core-counts the blocking character of the algorithm takes over. So,
even if one assumes that the time cost of a single core gathering all the sub-blocks corresponding
to its attributed row would show perfect weak scaling (constant amount of data per core), the
serial sequence of gathers done by the remaining cores makes the total cost increase linearly with
the number of cores. This is exactly what is shown in Fig. 12.

In turn, the XOR/MPI Sendrecv algorithm has a fundamentally different message path pattern
For the (recall Sec. II C), the exchange of the sub-blocks proceeds according to a pre-established
bi-dimensional Ncart ×Ncart pattern of “core rank .XOR. sub-block (row) index”. This is what is
illustrated in Fig. 11, where the map between the data-set (left) and the XOR exchange pattern
(right) is shown, on a case parallelized over eight cores. The values in the latter are integers that,
together with their row and column indices form a one-to-one and onto map with the poloidal and
toroidal indices of the sub-blocks of data (“pencils”), represented by the matrix elements on the
left. Namely, within column (or core rank) j, element i stores an integer number 0 ≤ l < Ncart.
It specifies that sub-block l of the corresponding data array (left side) on core rank j is to be
exchanged with core rank l. Conversely, the element i of the XOR column on core rank l (right
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side) has the value j, which means that sub-block j of the data-set on core rank l (left side) is
going to be exchanged with core rank j. This forms a consistent exchange pair between sub-block l
on core j and sub-block j on core l. Each row of the XOR matrix forms Ncart/2 of such pairs,
without any concurrent message paths. As a practical example of this rule, note that the elements
in the first row of the XOR exchange pattern specify the diagonal data-set sub-blocks (left side)
and therefore involve no actual inter-core exchange. The data exchange dictated by the second
and third rows of the XOR pattern are depicted in Fig. 11. Sequentially realizing all rows in the
pattern yields the full transpose.

Increasing the number of task while keeping the amount of data per task constant yields the
weak scaling properties of this method. Even though (i) the number of messages to pass (sub-
blocks) increases quadratically with the number of cores, (ii) their size decreases linearly and (iii)
the amount of pairs available to exchange messages simultaneously increases also linearly. In the
limit of large number of cores, the three factors balance and a flat curve representative of perfect
weak scaling should be obtained, with a level set by the network bandwidth. This is shown by the
red curve in left plot of Fig. 12, at least until 256 cores. For higher numbers of cores the scaling
starts to degrade mostly due to network limitations, as we discussed already in Sec. V. In these
cases, for HPC-FF, the accumulation of latency (at each row of the XOR pattern) was found to
represent a significant part of the communication time, due to the smallness of the messages being
passed, which limited the scaling properties of the algorithm. On HELIOS, a similar effect is seen.
Additionally, for bigger message sizes, the effect of the network collisions seems to start playing a
role for the highest core-count (2048). This can be seen from the plot on the right of Fig. 12, where
the same scaling is repeated for higher radial grid-counts, which effectively increases the size of
messages being passed. The larger the message size is, the lower the scaling sensitivity to network
latency is, since the latency times become negligible compared to the actual message exchange
time. The broken lines show tests made on messages four, eight and sixteen times bigger than the
original case (solid line, same case of the left plot), respectively. For such message sizes the role
of latency becomes sub-dominant and therefore it can not account for the increase observed in the
execution time. The natural candidate to do so seems to be network congestion, caused by too
many messages being exchanged simultaneously. The gather (or scatter) transpose method seem
to suffer from the same problem, as is hinted by the last data point of the corresponding weak
scaling curve Fig. 12 (left), which starts to deviate from the linear behaviour observed or smaller
core-counts.
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FIG. 12. On the left, weak scaling measurements for the XOR/MPI Sendrecv transpose and
MPI Gather/Scatter methods on HELIOS with Bullx MPI (v1.1.14). The grid-count is given by Nχ =
2048, Ns = 512 and Nφ = Ncart. On the right same weak scaling measurements for the XOR/MPI Sendrecv

transpose using different message sizes by changing the radial grid-count: Ns = {512, 2048, 4096, 8192}.
Note the logarithmic (left) and linear (right) plot scales.

In sum, one concludes that the gather/scatter algorithm can not be considered as an alternative
to the XOR/MPI Sendrecv transpose due to its much poorer scalability with the number of cores.
However, it is worth to point out that the non-blocking version of these, as well as other collective
directives, which are part of the new MPI-3 standard, might change this picture, by allowing to
overlap the FFT computations with the distributed matrix transposition. Such tests are naturally
left for future work. For the time being, the remaining sections focus on the XOR method, which
still offers optimization potential.
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VIII. OPTIMIZATION OF THE XOR/MPI SENDRECV TRANSPOSE

Having tried several different alternative algorithms to the distributed transpose, it became clear
that the best choice to perform such task is the XOR/MPI Sendrecv method. Moreover, this choice
further offers optimization possibilities related to its “hand-coded” algorithm. Unlike the methods
relying on “canned” libraries (such as the MPI Alltoall directive and its derivatives), this one
allows changes to be made directly to the communication pattern. The following two sections
explore this possibility. Firstly, by trying to realize the communication pattern matrix following
different sorting orders in the sequential communication steps involved (Sec. VIII A). Secondly,
by invoking the zeros yield by the known NEMORB’s Fourier filters to perform only partial data
transposition (Sec. VIII B).

A. XOR exchange pattern sequence

Secs. II C and VII discussed already the internals of the XOR/MPI Sendrecv algorithm up to
a degree that makes the material of this section appear as a natural follow-up. It was mentioned
then that a matrix storing the communication pattern is followed, row-by-row, to perform the
transpose in Ncart sequential steps within a DO-loop (recall Fig. 11). Each step (row) provides a
set of pairs of cores that exchange specific sub-blocks of data in a non-overlapping fashion. Since
such steps of communication are independent of each other, there is no restriction on the order of
which they are executed.

Different sequences are followed here to cover the complete XOR exchange pattern. In practice,
an extra array with dimension Ncart is created to store the order over which the rows of the
XOR exchange pattern matrix are to be followed. Four different cases are considered, namely,
the standard sequential increasing order (Reference), the reverse order sequence (Reverse), the
Alternating sequence order given by {1, Ncart, 2, Ncart − 1, . . . , Ncart/2, Ncart/2 + 1} and finally
the random sequence order, obtained using a Knuth shuffle algorithm. The complete 2D FFT
algorithm (forward transform followed by inverse transform) using the optimized (half-complex
packed format) XOR/MPI Sendrecv is measured here on NEMORB’s ITER-sized spatial grid count
(Nχ = 2048, Ns = 512 and Nφ = 1024). What is shown in Table III are the elapsed times for
executing it a thousand times, using the different exchange pattern sequences aforementioned.
Following the same practice as before, the communication initialization costs have been removed
from the results.

Reference Reverse Alternating Knuth shuffle

HELIOS 207.7± 5.9 s 205.5± 7.8 s 213.5± 3.3 s 245.1± 1.5 s

TABLE III. Elapsed times measured in HELIOS for the complete 2D FFT algorithm (half-complex packed
format XOR/MPI Sendrecv), followed by its inverse equivalent to revert back from Fourier to configuration
space, executed one thousand times on NEMORB ITER-sized grid (Nχ = 2048, Ns = 512, Nφ = 1024).
Each column corresponds to a different XOR exchange pattern sequence. Eight simulations for each
sequence were performed and the average values are shown.

The best results are obtained for the case where the DO-loop proceeds in reverse order, although
only marginally faster than the standard case figures, with the difference well inside the error
bars, given by the spread in the measurements made. The alternating sequence yields slower
execution times but it is the random order (Knuth shuffle) which gives the worst results, even
subtracting the overhead related to the random shuffling of the sequence, which is done only once,
before the first transpose is executed. These findings are consistent with the expectation that
ordered memory access patterns pay-off compared to erratic ones, which are prone to cache misses.
Similarly, the alternating sequence seems to have more cache misses than the standard and reverse
cases that maximise the continuity of the sub-block memory access pattern inside the transpose
DO-loop. Based on these results, the Reference sequence is kept as the default. The marginal gain
obtained (< 1%) with the reverse order sequence does not justify the necessary changes, especially
considering how this would obscure the subject of the next section.
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B. Fourier filtering and the partial transpose

This section outlines the exploitation of NEMORB’s Fourier filtering, which forces a large fraction
of the Fourier transformed matrix to vanish. Naturally, these zeros need not be transposed and
inhibiting their communication should, in principle, alleviate the data exchange burden of the
algorithm.

The basic filter used in NEMORB is a diagonal one, which retains only a relatively narrow
band of poloidal modes around each toroidal mode in the system. Physically this corresponds to
retaining only modes that are relatively well field-aligned. All the modes outside this band are set
to zero, because they do not take part in the dynamics and moreover could contribute to increase
the numerical noise. The problem is that this filter, being diagonal, can only be applied after
the Fourier transforms in both angles are calculated, and not before. Indeed, after the poloidal
(local) Fourier transform is performed, the resulting (poloidal) spectrum needs to be carried out as
a whole into the toroidal Fourier transform, since the toroidal direction still contains configuration
space data. This means that the full transpose must be carried out before the field aligned filter
can be applied. The same holds for the back transpose that is done after the filter is applied. Such
operation must occur only after the inverse toroidal Fourier transform is applied, which converts
the narrowed toroidal spectra into a filled-up matrix corresponding to its toroidal configuration
space representation. The problem was also investigated while trying to extend the convolution
theorem treatment already used in NEMORB [7] to this part of the problem. The same conclusion
was reached though, namely, that one needs to carry out the full matrix transposes simply because
the filter is diagonal and therefore mixes both angular dimensions in a non-separable form.

On the other hand, besides the field aligned filter, a square filter is also applied to the data to
ensure a lower Nyquist frequency cut (to yield at least four nodal points per wavelength, instead of
two). Unlike before, it is possible to separate the projections of the square filter in the poloidal and
toroidal directions. Hence, one can apply the filter’s poloidal projection to the Fourier transformed
poloidal data before it is exchanged across cores, therefore avoiding communicating the resulting
zeros. Such a scheme would be easily feasible within the MPI Gather/Scatter algorithm outlined
in Sec. VII B (only a subset of cores would call the gather/scatter directive), but unfortunately
the expected gain does not compensate for the worse scaling of this method compared to the
XOR/MPI Sendrecv transpose (recall Fig. 12). Implementing it on the latter is slightly more
involved and is the subject discussed below. Since the algorithm to be modified is the fastest
one, namely the one using the Hermitian redundancy, the half-complex representation has to be
taken into account when both applying the poloidal filter and modifying the XOR communication
pattern.

The “four-node per mode” filter in the poloidal direction discards the high frequency modes
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FIG. 13. Illustration of the partial data transposition required after the “four-node per mode” low-pass
filter is applied to the poloidal Fourier transformed data. The white areas are transposed using original bi-
directional message exchange (MPI Sendrecv). The cyan area sends the data to the magenta area without
receiving the corresponding zero-elements (uni-directional message passing). The zeros in the yellow area
need not be communicated at all.
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specified by the poloidal index interval [Nχ/4 + 1, 3Nχ/4− 1] (recall Fig. 4). Since only the non-
redundant part of the spectrum is considered, this interval reduces to [Nχ/4 + 1, Nχ/2]. Moreover,
because the Nyquist frequency mode (Nχ/2) belongs to this interval, it is set to zero by the filter
and there is no need to invoke the packed format of Sec. V. One simply retains the first Nχ/4 + 1
of the Nχ/2 + 1 rows that would constitute the full non-redundant unfiltered spectrum. Fig. 13
illustrates these ideas on a (Hermitian reduced) case withNχ = 16, distributed overNcart = 8 cores.
The filtered-out interval corresponds to the lower part of matrix on the left, coloured in magenta
and yellow. The figure on the right side represents the corresponding distributed transpose matrix.
The white regions maintain the XOR algorithm unchanged, with the messages being exchanged
bi-directionally between the corresponding cores involved. The magenta and cyan regions need
uni-directional message-passing only. The cores with non-zero elements (cyan) send them to their
counterpart cores, which in turn have zero-elements (magenta). So, the former need not to receive
any data from the latter. Finally, the lower right corner area (yellow) requires no communication
whatsoever. Obviously, the very same principles directly apply to the toroidal projection of the
square filter, although this is not done here.

If implemented, the uni-directional communication part of the filtered transpose algorithm (ma-
genta/cyan areas) would reduce the total message size, but not the number of communication
connections. Hence, such change is only expected to improve significantly the performance of the
algorithm if it were network bandwidth-bound. Since however, the results obtained point to net-
work latency and congestion as the main factors limiting its scalability for the grid-counts under
consideration, most of the performance gain is expected to come from the yellow area of the matrix,
where no communication is necessary. Implementing this part would effectively reduce the number
of concurrent messages exchanged simultaneously. This is why the effort is put exclusively there.

Fig. 14 helps to understand in detail the modifications necessary to avoid communicating mes-
sages in the yellow area of Fig. 13. Similarly to Fig. 11, the left side shows the same (untransposed)
data-set matrix of Fig. 13 and the right side provides the corresponding XOR exchange pattern,
distributed in the same fashion over 8 cores. The colours provide a pictorial view of the map
between communication pattern and data-set just described. In particular, it is the upper right
corner of the XOR matrix (right side) that rules the lower right corner of the data-set matrix (left
side). This is seen from the fact that those element values l specify data-set sub-block indexes (or
core ranks) higher than Ncart/2. They have been coloured in yellow to highlight that the commu-
nication they specify is rendered unnecessary by the poloidal filter and, as such, is inhibited in the
algorithm. Compare with the examples on the right side of Fig. 2 to see that, of the four exchange
pairs per row, this causes the one coloured in yellow to be inhibited. Obviously, the bigger Ncart

(and hence also the data-set), the more pairs are affected.
The reason for the “cyan diagonal” of elements within the yellow area has to do with the fact that
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FIG. 14. Illustration of the effect of “four-node per mode” poloidal low-pass filter on the map between the
data-set and the communication pattern. The same data-set matrix of Fig. 13 is shown on the left. The
corresponding XOR exchange pattern on Ncart = 8 is represented on the right, using the same colours.
The numbers in the latter specify simultaneously the i-index of the data sub-block to be exchanged and
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20

the filter keeps the poloidal mode corresponding to the index Nχ/4. They are given by the data sub-
blocks with index Ncart/2 belonging to the cores ranked higher than Ncart/2. All remaining areas
of the pattern (including the uni-directional communication areas in cyan and magenta) are left
untouched in the algorithm and the original (bi-directional) XOR/MPI Sendrecv communication
is carried out. A clear conclusion that can be drawn from this figure before proceeding to the
performance measurements is that, for a given problem size, the higher Ncart is, the higher the
ratio between the yellow area and the rest becomes. Therefore, bigger grid-counts parallelised over
high numbers of cores benefit the most from this method.

The Table IV compares the cost of the new NEMORB’s 2D filter algorithm using the previous
considerations (Partial) and the same algorithm without doing so and therefore carrying out
the matrix transposition including all the filtered-out elements (Reference). An improvement in
performance of about 6% is achieved for the ITER sized grid-count. This further enhances the
speedup factors shown in Sec. VI for the new algorithm compared to the original one. On HELIOS
the improved speedup factor reached about 2.2. On HPC-FF, the degradation observed previously
was also reduced, with the speedup factor increasing from below 1.5 to slightly above 1.7. As
expected initially, reducing the average number of messages that need to go through the network
simultaneously alleviates congestion issues that the network might have and improves the scaling
of the XOR/MPI Sendrecv algorithm.

Reference Partial (filter)

HELIOS 208.0± 2.0 s 197.3± 3.5 s

HPC-FF 209.3± 16.6 s 182.3± 9.2 s

TABLE IV. Elapsed times measured for seven and three simulations made on HELIOS and HPC-FF,
repectively, with full and (filtered) partial transposes on the ITER-sized grid-count. The speedups achieved
are within the range 5− 10%.

The final remarks relates to the filter choice presented here, which was motivated by the default
poloidal component of the square filter used in NEMORB. In principle, the algorithm also allows
different poloidal filter frequency values, although this part of the code was not tested extensively.
Moreover, it should be noted that changing this values affects the performance. Obviously, nar-
rower filters yield less zeros and therefore less communication is inhibited. Finally, because of
its Hermitian redundancy, the algorithm imposes that the poloidal filter must be symmetric on
the full (positive and negative) poloidal mode number domain. No different positive and negative
frequency cuts are allowed. As already mentioned before, the same optimization can be done for
the toroidal part of the square filter. This is nevertheless left as future work.

IX. CONCLUSIONS

The work reported here aimed at the optimization of NEMORB’s bi-dimensional Fourier filter-
ing algorithm, which constitutes a bottleneck of that very HPC-resource demanding code. The
implementation of the Hermitian redundancy allowed to reduce the number of FLOPs involved in
the Fourier transforms by roughly a factor of two. Further using a clever storage for the Hermitian-
reduced data (half-complex-packed-format) decreased the data-set to be transposed across cores
by the same amount. This led to speedup factors of the order of two on a nominal grid-count
representative of a typical ITER simulation, measured on several HPC facilities. Nevertheless, the
performance measurements further revealed that, for large numbers of tasks, a degradation of the
speedup could occur due to network being unable to handle the all-to-all message passing with the
same degree of efficiency.

The implementation of other transpose methods (MPI Alltoall and its FFTW3.3 and BLACS
counterparts), as well as an alternative algorithm based on the MPI Gather/Scatter directives,
was attempted, just to conclude that the original “hand-coded” XOR/MPI Sendrecv algorithm
gave, in general, the best results. An exception was observed on the VIP machine, at RZG,
where the derived data type’s version of MPI Alltoall algorithm performed best. On the other
hand, the same algorithm yielded the worst overall performance on HPC-FF, at JSC, showing
how dependent this algorithm is on the available MPI library implementation. Another reason
taken in to account for recommending the XOR/MPI Sendrecv as the default method is related
to its flexibility. This allowed to exploit NEMORB’s low pass filtering, used to ensure enough
resolution on all physically allowed modes in the system, to further reduce the data-set exchanged
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across cores. Indeed, a priori knowledge about the matrix elements that are set to zero by such
filter allowed to exclude parts of the matrix from the data exchange step, such that only a partial
transposition was performed. This further increased the gain obtained compared to the original
full transposition of the full-complex Fourier transformed data, with the speedup factor of about
2.2 being achieved on HELIOS, at IFERC-CSC. On HPC-FF, where network limitations degraded
the expected theoretical two-fold speedup, a benefit was also achieved, with the speedup factor
increasing from below 1.5 to slightly above 1.7.

Within the NEMORB context, the previous improvement results apply to each clone of the
spatial domain. How will they translate in terms of the global NEMORB speedup depends on
the problem size being considered, as well as on the HPC facility being used. Nevertheless, it
noteworthy that it could make sense to consider running cases with half the usual number of cores
Ncart for the toroidal communicator, i.e. with two toroidal grid-nodes per core instead of one,
whenever the network limitations start to impair the all-to-all scaling. The same total number of
MPI tasks could be achieved by increasing the number of clones (particle domain decomposition)
accordingly. For instance, for an ITER-size grid of 512 × 2048 × 1024, instead of using Ncart =
Nφ = 1024 and four clones to run on 4096 MPI tasks, one could use Ncart = Nφ/2 = 512 and eight
clones to get the same number of MPI tasks. In terms of the 2D filtering algorithm, the drawback
of such setup is, of course, that only half of the resources are available to calculate the Fourier
transforms and to perform the data exchange. The advantage stems from the effective reduction
by a factor of four of the number of MPI connections needed for the all-to-all communication of
the transpose (that goes with O(Ncart)

2), which can be important when network latency and/or
congestion start to take over. An extra benefit relates to a better grid-cells/guard-cells ratio, so
the simulation becomes more memory efficient. This recommendation is consistent with the recent
results reported in [8], which show it is advantageous to do the domain decomposition with the
particle decomposition (clones) as the first communicator. Since the charge assignment operation
involves global sums across the clones, if all the clones are distributed sequentially within each
compute node (on HPC-FF one can have up to eight clones, on HELIOS the double is possible) this
reduces significantly the amount of inter-node communication. Making the toroidal communicator
the second one being distributed brings no disadvantages because the transposes that are involved
in the 2D FFTs always require an all-to-all communication over large numbers of cores, beyond
the node-core-count. Since the choice of using double the number of clones and reduce Ncart by
the same factor affects the whole code, not just the 2D filter algorithm, to decide whether it makes
sense or not implies running full NEMORB simulations using the new Fourier algorithm. This is
left for future work.
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