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1 Introduction

According to Flynn’s Taxonomy, a classification of computer architectures [1],
there are four classifications defined by the instruction and data streams which
are available in a specific architecture. These are Single Instruction, Single
Data stream (SISD, Fig. 1 left panel), Single Instruction, Multiple Data streams
(SIMD, Fig. 1 right panel), Multiple Instruction, Single Data stream (MISD),
and Multiple Instruction, Multiple Data streams (MIMD). For further details
please see [A]. This classification of computer architectures can also be viewed as
a classification by parallelism. Then SISD architectures correspond to a single
core serial (non-parallel) computer, MIMD to a multi core parallel computer,
and SIMD to vector computer. MISD are rather rare systems which do not fit
really into this picture, e.g. the flight control computer of the Space Shuttle.

In this report we focus on Single Instruction, Multiple Data architectures,
where one single instruction is executed on a multiple set of data in parallel.
Furthermore, we focus on double precision (64 bit) test cases, since most of
the scientific simulation software uses double precision floating point numbers.
An advanced question would be whether some scientific numerical codes could
partially use single precision (32 bit) floating point numbers instead and how
much performance could be gained due to vectorization. However, this question
reaches beyond the topics covered in the work presented in this report.

The goal of the work presented here is to investigate the performance gain of
intrinsic functions making use of the SIMD capabilities of Intel processors with
Nehalem architecture. It was triggered by the EUTERPE vectorization project
of HLST which has its impact on the selection of intrinsic functions taken here
and on the choice of the vectorization concept.

The Streaming SIMD Extensions (SSE) is a SIMD instruction set extension
to the x86 architecture, designed by Intel and introduced in 1999 in their Pen-
tium IIT series processors. The Nehalem processor supports SIMD instructions
of the SSE4.2 instruction set to access small-scale SIMD with 128 bit registers.
In this connection, the 128 bits of the SIMD registers can hold four 32 bit, two
64 floats (Fig. 1), eight 16-bit short integers, four 32 bit, two 64 bit integers,
and sixteen 8-bit bytes or characters, respectively [B]. The capability of SIMD
in Intel and AMD processors will be further extended in the future as Intel
has already announced the Advanced Vector Extensions (AVX) which will be
the new 256 bit instruction set successor to SSE and is designed for applications
that are floating point intensive. In addition, modern Graphics Processing Units
(GPUs) are using Single Instruction, Multiple Thread (SIMT) implementations,
capable of branches, loads, and stores on 128 or 256 bits at a time. Basically,
SIMT is a variant of the SIMD class. If a code has been programmed for SIMD
it will automatically run on a SIMT architecture but not the other way round.
Hence, it is of key interest to investigate today’s Nehalem’s SIMD capabilities
for realistic double precision (64 bit) problems to be in line with future hardware
development.

A necessary requirement for vectorization is the absence of true backward
or loop data dependencies across the iterations of a loop statement. Only op-
erations which are completely independent from each other or just depend on
results whose calculation has been completed before can be executed in parallel.
The vectorization concept discussed in the rest of this section matches the re-
quirement of the EUTERPE vectorization project mentioned above. Therefore



SISD SIMD

s9I2A)
ECTRY )

v

>< 64 bits >

< 64 bits

< >
128 bits

Figure 1: Left Panel: Schematic floating point work flow in the single instruc-
tion, single data (SISD) concept which corresponds to the scalar execution.
Right Panel: Schematic floating point work flow in the single instruction, mul-
tiple data (SIMD) concept which corresponds to the vector execution. In the
shown example the 128 bit SIMD or vector unit is divided into 2 x 64 bit which
corresponds to a double precision vector operation.

it cannot be seen as the universal concept of vectorization. In this concept the
vectorization of source code follows the subsequent described procedure. In a
first step the main loop within the target source code part, e.g. a subroutine,
is split into an outer loop providing chunks of vector data and an inner loop
working on those chunks. This procedure is commonly known as “strip mining”.
The size of those data chunks can be controlled by an according parameter.
Thus, the outer loop enables a complete control over the length of work vectors
which will be processed by the vector units of a CPU through the inner loop
statements which will be vectorized. The basic idea of a vector pipeline unit
inside a CPU compared to a scalar pipeline is sketched in Fig. 1.

In a subsequent number of working steps, the inner loop is split into sev-
eral block loops of same size (Fig. 2, middle panel) but containing less source
code statements, usually one to a few. Correspondingly, scalar variables used
inside the former scalar main loop are exchanged by vector variables. This is a
mandatory step for vectorization, no matter whether done intrinsically by the
auto-vectorizer of the compiler, e.g. the auto-vectorizer of ifort (Section 4) or
done manually by the programmer (Fig. 2, lower panel), using e.g. the Vector
Mathematical Functions (VMF) of the Intel Math Kernel Library (MKL) (see
Subsection 4.1 and [C]). The purpose is the following. Statements which shall
be replaced by a vectorized version manually have to be isolated first within the
source code. Moreover, the auto-vectorizer units of the compiler have certain
limitations when analysing complex code structures and will simply fail if the
source code structure exceeds this complexity limit. However, by splitting big



0O ip = 1, npart_loc

%hog = SORT(Z.0 * mutd / b_abs) * msdgsispecies)
nawvg = NINT(rhog * REAL (NAYG_TRM) )

IF (nawg < NAVG_TRM) THEM
navg = NAYG_TREM

ELSE IF (navg > NAVG_MAX) THEM
naveg = NAYG_MAX

END IF

END DO

tmpl_vec(l:newSize) = 2.0 * mutO_vec(l:newSize)

CALL WDDIY ( newSize, tmpl_vec(l:newSize), b_abs_wvec(l:newSize), &
tmpZ_vec(l:newlize) )

CALL WDSORT( newSize, tmpZ_wecil:newSize), tmpl_vec (l:newSize) )

rhog_vec(l:newSize) = tmpl_vec(l:newSize) * msdgs(species)

I select number of points on the gyro-ring

DO ip = 1, newSize !remark: LOOP WAS VECTORIZED.
rhog = rhog_veciip)
| MINT(tmpl) replaced by INT( tmpl + 0.5 )
tmpl_wvec(ip) = rhog * navg_trm_real + 0.5

END DO

00 ip = 1, newSize !remark: LOOFP WAS VECTORIZED.
tmpl = tmpl_vec(ip)
navg_wecl{ip) = INT(tmpl)

END DO

00 ip = 1, newSize ! remark: LOOF WAS VECTORIZED.
navg = navg_veclip]
nawvg_wvecl{ip) = MAX{ navg, NAYG_TRM ]

EHD DO

DO ip = 1, newSize ! remark: LOOF WAS YECTORIZED.
navg = navg_veclip]
nawvg_wveclip) = MIN{ navg, NAVG_MAX )

END DO

tmpl_vec(l:newSize) = Z.0 * mutO_vec(l:newSize)

CALL VDDIY ( newSize, tmpl_wec(l:newSize), b_abs_vec(l:newSize), %
tmpZ_vec(l:newSize)

CALL VDSORT( newSize, tmpZ_wec(l:newSize), tmpl_vec (l:newSize] )

rhog_vecil:newSize) = tmpl_wec(l:newSize) * msdgsispecies)

I select number of points on the gyro-ring

00 ip = 1, newSize !remark: LOOP WAS YECTORIZED.
rhog = rhog_wvec(ip)
! NIMT(tmpl) replaced by INT( tmpl + 0.5 )
tmpl_vecl(ip) = rhog * navg_trm_real + 0.5

END DO

DO ip = 1, newSize !remark: LOOP WAS YECTORIZED.
tmpl = tmpl_wec(ip)
navg_wvec(ip) = INT(tmpl)

END DO

00 ip = 1, newSize ! remark: LOOP WAS YECTORIZED.
navg = navg_wveclip)
navg_vec(ip) = MAX( navg, NAVG_TRM

END DO

00 ip = 1, newSize ! remark: LOOP WAS YECTORIZED.
navg = navg_weclip)
navg_vec(ip) = MIN( navg, NAVG_MAX

END DO

Figure 2: Upper Panel: Example of a FORTRAN source code section showing
a loop statement before splitting the statement into single loop blocks. Middle
Panel: Same statement as above but after splitting into single loop blocks.
Lower Panel: The same source code section as shown in the upper panel after
replacing the square root function by the vector square root function provided
by the VMF of Intel’s MKL.

Please note that, the source code examples shown here are taken from the
vectorization of a particle in cell code using manual “strip mining”, thus they
are not universal (see Section 1).



CALL PERFON ('sutovec') CALL PERFON ('mkl-vmf ')

DO nb = 0, nBlocks - 1 DO nb = 0, nBlocks - 1
ndfs = nk * nChunk nofs = nb * nChunk
n3ize = MIN( nmax — nOfs , nChunk nSize = MIN( nmax — nOfs , nChunk )
nitart = nOfs + 1 nStart = n0fs + 1
n3top = nOfs + nSize n3top = nOfs + n3ize
vecd(l:nSize) = rearrl(nStart:nStop) wvecl(1:nSize) = rearri(nStart:nStop)
'DECE VECTOR ALWAYS CALL WDEXF( nSize, wecl(l:nSize), wecZ(l:nSize) )
DO n =1, n3ize
wec2(n) = EXP( weclin) ) ENDDO ! b = O, nBlocks - 1

CALL FERFOFF
ENDDO ! mb = 0, nBlocks - 1

CALL PERFOFF

Figure 3: Source code example from the test code used on the Intel Nehalem
CPU to investigate the vectorization behavior on Intel’s Nehalem architecture.
Left Panel: Double loop statement containing the intrinsic Exponential (EXP)
function for vectorization using the Intel ifort auto-vectorizer unit. Right
Panel: Loop statement containing the double precision (64 bit) vector Expo-
nential (VDEXP) function for vectorization using the vector math function of
the Intel MKL.

statement blocks which are rather complex into smaller less complex ones, one
can support the compiler to vectorize a given source code statement.

2 Test Case Definition for the Performance Mea-
surement

The test case used in the work presented here, was defined as follows. For
the double precision performance measurements (Appendix B) the data vector
which serves as a work data reservoir is set to a size of 226 double precision vector
elements. For the single precision performance measurements (Appendix C) 226
single precision vector elements are used. The values of those vector elements
range from 0 to 27. In those cases where a second input vector is required,
e.g. the multiply operation, the values of this second input vector range from
m/2 to 57/2. The size of the input vectors is chosen for two reasons. Firstly,
to assure that there is enough work within the source code part for which the
timing measurement is performed, so that the overhead of the used performance
library PERF [D] is negligible. Secondly, a data array of such a size definitely
resides in the main memory and the work data have to be fetched from there
like in a data intensive case of a scientific numerical code.

For performance timing measurements we instrumented the used test bed
codes by the simple but efficient PERF library (Fig. 3). The PERF library was
programmed by the RZG scientist Reinhard Tisma and gives information about
the time spent and the Mflop rate achieved in a detected region.

A double loop statement is used to host the intrinsic functions statement
which is investigated. This follows the idea which was already sketched in the
introduction where the outer loop is providing chunks of vector data and an
inner loop working on those chunks (Fig. 3). The size of those data chunks can
be controlled by a corresponding parameter which is changed at compile time.
For our investigations this parameter is varied in steps of a factor two between
24 and 226 to sample the full range from small to large loop sizes. The choice of
vector length of 2™ assures that the work vector size is a whole-number multiple
of the length of the CPU’s vector pipeline (see Fig. 1).



The loop statements shown in Fig. 3 are supposed to be a general example
which can be used for all cases described in this report by replacing the corre-
sponding lines of source code. The left panel shows a double loop statement with
the intrinsic Exponential (EXP) function prepared for the Intel auto-vectorizer
unit by the use of the \DEC$ VECTOR ALWAYS pragma statement. The non-
vectorized loop statements are realized by the use of the !DEC$ NOVECTOR
and !IBM* NOVECTOR pragma statements, for Intel ifort and IBM XLF,
respectively. Note that there is no corresponding pragma statement to !'DEC$
VECTOR ALWAYS for IBM XLF. In cases of loops having no pragma statement
both compilers decide whether vectorization is possible for the statement or not.
Of course, the intrinsic Exponential (EXP) function being examined in Fig. 3
can be replaced by any other intrinsic function. When using the vector per-
formance libraries, i.e. Intel MKL (Subsection 4.1), Intel IPP (Subsection 4.2),
and IBM vector MASS (Section 6), the inner loop statement is replaced by
the corresponding subroutine call to the vector function. In the right panel of
Fig. 3 the example is shown for the double precision (64 bit) vector Exponential
(VDEXP) of the vector math functions of the Intel MKL.

For the performance measurements, we request a complete quad core CPU
of HPC-FF although we only use a single core. This is done to assure exclusive
access to the L3 cache of the Nehalem CPU and to prevent that our measure-
ments are influenced by other processes running on the same CPU. In a similar
way, we executed the performance measurements on an IBM POWER6 CPU
of VIP on a dedicated empty compute node. All measurements are repeated
three times. The results shown in this report are the arithmetic average of those
multiple measurements.

3 Hardware Architectures and Vectorization

3.1 Intel Xeon X5570 CPU with Nehalem Architecture

The HPC-FF (High Performance Computer for Fusion) computer cluster [E]
was installed in mid of 2009 at the Jiilich Supercomputing Center (JSC). HPC-
FF is supposed to be a production machine for fusion simulations. Since the
HLST gives high level support to users of HPC-FF, the priority target for this
vectorization performance study was the hardware setup of HPC-FF.

HPC-FF is equipped with 2160 Intel Xeon X5570 quad core CPUs which are
build using the Nehalem architecture in 45 nm component size. It has a basic
clock rate of 2.93 GHz and a L3 cache of 8 MB. Furthermore, this processor
houses 256 KB L2 cache per core and 64 KB L1 cache per core (32 KB L1 Data
and 32 KB L1 Instruction). Additionally, it has a new point-to-point processor
interconnect, the Intel QuickPath Interconnect, replacing the legacy front side
bus, a second-level branch predictor and a second-level translation lookaside
buffer [F]. The Xeon CPU is in addition equipped with vector integer/floating
point registers of 128 bit total width (see Fig. 1). Whenever we are using the
terms “the Intel Nehalem CPU” or “Nehalem architecture” we refer to the CPU
as described above.



3.2 IBM POWERG6 CPU and Architecture

In May 2008, the new IBM Power6 supercomputer was installed at the Rechen-
zentrum Garching [G], named VIP.

VIP is equipped with IBM POWERG dual core server CPUs with a basic
clock rate of 4.7 GHz and a 32 MB L3 cache. The CPU has 64 KB, four-way
set-associative instruction cache per core and 64 KB data cache per core of
an eight-way set-associative design with a two-stage pipeline supporting two
independent 32-bit reads or one 64-bit write per cycle. Each core has semi-
private 4 MB unified L2 cache, where the cache is assigned a specific core, but
the other has a fast access to it. The POWERG6 CPU is also equipped with vector
integer/floating point registers of 128 bit total width (see Fig. 1). Whenever we
are using the terms “the IBM POWERG6 CPU” or “POWERSG6 architecture” we
refer to the CPU as described above.

4 The Intel Fortran Compiler ifort and
the Intel Performance Libraries

For this study we used the Intel Fortran compiler ifort [H] version 11.1.072
which provides an auto-vectorizer unit. This part of the compiler converts
simple enough loop source code statements automatically into vectorized code
sequences.

The auto-vectorizer unit can be handled by compiler flags. It is turned on
by specifying the vector instruction set of the processor, e.g. -xSSE4.2 [I] or
by using one or more of the following similar compiler flags -ax, -m, —arch, or
-minstruction. The vectorization behavior of single source code parts can be
controlled by pragma compiler statements. A compiler report can be generated
with the flag -vec-reportN, where N is a number in the range of 1 to 5 which
specifies the details of the output content. Here 3 corresponds to the most
verbose mode. Note that, the auto-vectorizer unit is active for an automatic
optimization level higher than two, i.e. higher than -02. All above mentioned
switches are explained in the compiler documentation [H].

For the work presented here we use the following optimization compiler op-
tions: -03 -xSSE4.2 -vec-report3 (see Section 6).

Moreover we used the two Intel performance libraries, the Intel Math Kernel
(MKL) library version 10.2.5.035 and the Intel Integrated Performance Primi-
tives (IPP) Library of version 7.0.3.048. The vector functions of the two libraries
were used to compare their performance to the corresponding Fortran functions
forced to be non-vectorized or vectorized by the auto-vectorizer of ifort.

4.1 The Math Kernel (MKL) Library

The Intel Math Kernel Library (Intel MKL) is a library of highly optimized,
extensively threaded math routines for science, engineering, and financial appli-
cations that require maximum performance. Core math functions include BLAS,
LAPACK, ScaLAPACK, Sparse Solvers, Fast Fourier Transforms, Vector Math,
and more [J].

For this work the MKL library [C] was of great interest because it pro-
vides optimized vector versions for a large set of intrinsic math functions, i.e.



INTERFACE
INTEGER(KIND=4) FUNCTION ippsExp_&4f(a,r,n)
I' C Function Reference:
I IppStatus ippsExp_E4F (const Ipp&4f* pSrc, Ipp&4f* pDst, int lenj;
IDEC$ ATTRIBUTES C, DECORATE, ALIAS : 'ippsExp 64f' :: ippsExp 64+
IMPLICIT MNOME
INTEGER{KIND=4} ,INTENT{IN) :: n
REAL (KIND=8) ,INTENT{IN] :: ain)
REAL (KIND=8),INTENT(OUT):: rin)
END FUMCTION ippsExp_64f
EMD IMTERFACE

Figure 4: Example for a Fortran interface for the Intel IPP Library. Here the
interface for the double precision (64 bit) exponential function is shown.

the Vector Mathematical Functions (VMF) which are part of the MKL Vector
Mathematical Functions Library (VML). The library further contains vector
pack/unpack and vector service functions. We do not use the vector service
functions, however, a performance test using the vector pack/unpack functions
is part of this work. All vector functions are described in detail in chapter 9 of
the MKL manual [C].

Moreover, MKL contains include files providing interfaces for FORTRAN 77,
Fortran 90 and C. For the work presented here, we used the Fortran 90 interfaces.

4.2 The Integrated Performance Primitives (IPP) Library

In this study vector instructions of the Intel Integrated Performance Primitives
(IPP) Library [K] were used. The IPP is an extensive library of highly optimized
software functions for multimedia, data processing, and communications appli-
cations which include video coding, signal processing, audio coding, image pro-
cessing, speech coding, JPEG coding, speech recognition, computer vision, data
compression, data integrity, image color conversion, cryptography/CAVP val-
idated, string processing/regular expressions, vector/matrix mathematics, ray
tracing/rendering [L].

Although, only a small fraction of its capabilities was of interest for the work
presented here, namely the included vector/matrix mathematics, the IPP is of
interest for additional comparisons. On the one hand IPP provides instructions
which are analogous to the vector instructions of the MKL library which allows
performance comparisons of the two libraries. On the other hand IPP provides
some instructions which are not provided by MKL at all, such as vector versions
of type conversions which offered further performance comparison with the auto-
vectorizer unit of the ifort compiler.

Since the IPP is provided by Intel only as a pure C/C++ library which means
that there are only C interfaces available, it was necessary to write suitable
Fortran interfaces by ourselves. An include file providing the suitable Fortran 90
interfaces was developed using Intel compiler pragma statements. An example
for such an interface is given in Fig. 4. There are several ways to call a C
function in Fortran, e.g. using wrapper routines in C or Fortran, providing a
Fortran interface, etc. Moreover, one must follow the C naming convention and
pass arguments by value. This can be done by e.g. using the C ISO bindings of
the FORTRAN 2003 standard or using compiler pragma statements.

Since we make use of an Intel library and we used the ifort compiler,
we made the decision to provide Fortran interfaces using Intel ifort pragma
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statements which start with IDECS$ (Fig. 4). In this example, the pragma AT-
TRIBUTES C is specified to pass arguments (except for arrays and characters)
by value. A Fortran alias name is assigned to the C function by ATTRIBUTES
ALIAS. And ATTRIBUTES DECORATE specifies that the correct prefix and
suffix decorations are assigned to the function name specified by ATTRIBUTES
ALIAS. This refers to the name mangling done by the Fortran compiler.

5 Vectorization and the Intel Nehalem CPU

Vectorized machine code generated by ifort using the auto-vectorizer unit or
the vector functions of either the Intel MKL or IPP library will be executed in
the vector pipelines of Intel’s Nehalem architecture named SSE (SIMD stream-
ing extension [I]). SIMD (Single Instruction, Multiple Data) denotes that in-
structions are only decoded once, however, if possible they are executed several
times in a pipeline as described in Section 1.

5.1 Basic Run Time Behavior

The measurements show a basic structure which shows only in parts the imprint
of the vectorization behavior. Large parts of the measured run time curves are
dominated by the cache and bus structures of the CPU (Fig. 5). However, the
exact shape of measurements for different intrinsic functions depends on the
ratio of calculation operations to load/store operations. For higher ratios the
influence of the cache and bus structures of the CPU will be smoothed out
since the overall execution time increases and therefore the latencies of cache
and memory are more and more negligible. This can be seen for e.g. the ADD
operation (Fig. 10) compared to the SIN intrinsic function (Fig. 20).

For very small loop sizes (< 16) the execution time is dominated by the loop
overhead. Then follows a more or less distinct broad minimum in execution
time which corresponds to vector sizes fitting completely into the Data Cache
(L1).

With growing vector size it fits no longer completely into the respective level
cache and the behavior is dominated by the cache hierarchy and the bandwidth
of the bus system. This results in a step like structure where each step corre-
sponds to certain cache level. This is emphasized in Fig. 5 by dashed black lines
denoting the cache sizes of the Nehalem architecture in terms of 64 bit vector
sizes.

5.2 Vectorization using the Intel ifort auto-vectorizer unit

In general, making use of the auto-vectorizer of a compiler is the preferred
way, since no platform dependent code structures are required [2]. Moreover,
in case of the Intel Fortran compiler ifort this statement holds as well from
the performance point of view, since source code statements vectorized by the
ifort auto-vectorizer unit show in most tested cases a better performance than
the functions included in the Intel performance libraries (Tab. 1, Figs. 10 — 12,
20, and 22).

In some other cases the Intel auto-vectorizer achieves similar results com-
pared to the Intel performance libraries (Tab. 1, Fig. 9 and 13). However, there

11
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Figure 5: Run time of a MULTIPLICATION versus vector length compiled with
ifort shown for a non-vectorized loop (blue) and loops vectorized by auto-
vectorizer (red) and manually using the Vector Math Functions in the Intel
MKL (yellow) and Intel IPP (green) library on a Xeon X5570 CPU of HPC-FF.
The basic structure shows inefficient behavior for very small loop sizes, followed
by a broad minimum in execution time for vector sizes fitting into the Data
Cache (L1). For larger vector sizes the behavior is dominated by the cache
hierarchy which leads to a step like structure. To emphasize this, the effective
cache sizes of an Intel Xeon X5570 CPU per used vector have been plotted in
terms of double precision (64 bit) as black dashed lines. For a MULTIPLICATION
two argument and one result vector are used and therefore the effective cache
size is one third of the actual cache size. Note that this is a log log plot.

also exist code structures where the auto-vectorizer fails to vectorize or may
not achieve the expected performance (Tab. 1, Figs. 21 and 23). In those cases
it is preferable to manually implement the calls to e.g. the VMF of the MKL,
however, to the price of generating platform dependent code which restricts the
universality of the code (see [2]). The corresponding chapter 9 of reference [2]
can be found as well on the web [M].

Moreover, e.g. in the case of the MIN/MAX function the gain is almost zero
for the arbitrary case (Tab. 1, Figs. 6, and 16), however, in the special case of
using the MIN and MAX function to limit a single vector to a given upper and
lower limit, respectively, the vectorization is counter productive (Tab. 1, Figs. 6,
and 15). In those cases the vectorized statement has a larger execution time
than the non-vectorized loop.
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5.3 Vectorization using the Intel MKL Library

The Vector Math Functions (VMF) of Intel’s Math Kernel (MKL) library don’t
achieve in most of the tested cases the performance of the corresponding intrin-
sic Fortran functions vectorized by the ifort auto-vectorizer unit. The only
exceptions seem to be the already above mentioned SQUARE ROOT and FLOOR
function shown in Figs. 21 and 23, respectively. In some cases the vector length
seems to have a strong impact on the execution runtime (e.g. Figs. 10 and 22).
This is discussed in greater detail in Subsection 9.1.

A vector gather operation has been tested as well, to find out about the
performance of the vector packing function of the Intel MKL VML compared
to gather using a loop-if statement. A vector gather operation denotes the
following procedure. If a work vector contains elements which e.g. do not fulfill
a conditional statement, they are removed and the remaining vector elements,
which are now scattered across the former work vector are packed together into
a smaller temporary work vector. This can be done by a copy process inside the
conditional statement or by accessing the original vector using a mask vector
which represents the conditional statement.

The results are shown in the Figs. 24 and 25. Note that we scaled the
execution times of packing operations involving more than one vector packing to
the number of vectors involved, e.g. the execution time of the packing operation
using three vectors was divided by three and so on. As expected, the run time
per packed vector for both, the loop-if statement and the MKL packing function,
gets shorter the more vectors are packed using the same packing pattern. The
gain for a non-vectorized and an auto-vectorized single loop statement is the
same. However, this gain is larger than the one for the Intel MKL packing
functions.

5.4 Vectorization using the Intel IPP Library

The Intel Integrated Performance Primitives (IPP) Library in most cases can-
not compete with neither the Intel ifort auto-vectorizer unit nor the Intel
Math Kernel (MKL) library for the presented double precision test cases. Only
in very few cases the Intel IPP shows an equal (SIN, Fig. 20) or better (ADD,
Figs. 10) performance than the Intel MKL, however, in those cases the perfor-
mance achieved by the Intel ifort auto-vectorizer unit is still better. At least
for the ADD operation (Figs. 10, upper panel) the ifort auto-vectorizer and the
IPP give comparable results within a five percent range (Tab. 1).

The situation seems to be different for some cases of operations with single
precision (32 bit) arguments (MULT, Fig. 26, upper panel). This is not surprising
since the Intel IPP library is optimised for multimedia application which are
mainly programmed in single precision. However, this seems to be not a general
trend (compare the EXP function, Figs. 13 and 26, lower panel). More detailed
investigations would have to be done on this subject.

5.5 Vectorization gain on Intel Nehalem

The absolute gain due to vectorization on the Intel Nehalem CPU are given for
all examined intrinsic functions in Tab. 3. The relative gain is given in Tab. 2
and Fig. 6. Some of the functions show a performance loss due to vectorization,
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Table 1: Table listing the fastest execution time of different function statements
measured for different vectorisation methods. The overall fastest execution time
are high lighted in red. If the execution time of different methods agree within
an error limit of five percent the methods are considered to show an equal
performance and both results are high lighted.

Function non-vec.  auto-vec. ~MKL-VMF  IPP-vec
(sec) (sec) (sec) (sec)
ABS (Fig. 9) 0.112 0.092 0.090 0.178
ADD (Fig. 10) 0.170 0.144 0.151 0.148
ATAN2 (Fig. 11) 1.695 1.152 1.317 2.549
DIV (Fig. 12) 0.561 0.308 0.356 0.575
EXP (Fig. 13) 0.738 0.360 0.352 1.339
FLOOR  (Fig. 23) 0.155 0.153 0.072 0.538
INT (Fig. 14) 0.053 0.053 — 0.178
LiM-MIN  (Fig. 15) 0.053 0.068 — 0.108
MADD (Fig. 10) 0.367 0.213 0.231 0.226
MIN (Fig. 16) 0.108 0.108 — 0.232
MopuLo (Fig. 19) 0.507 0.274 0.346 —
MULT (Fig. 22) 0.157 0.132 0.133 0.224
NINT (Fig. 14) 0.063 0.063 — 0.190
POW (Fig. 17) 1.872 1.443 0.947 1.985
pow302 (Fig. 18) 0.757 0.395 0.659 4.446
REAL (Fig. 23) 0.086 0.061 — 0.117
SIN (Fig. 20) 1.214 0.486 0.599 0.658
SQR (Fig. 22) 0.095 0.068 0.072 0.129
SQRT (Fig. 21) 0.733 0.428 0.358 0.811
vPACKM  (Figs. 24,25) 0.124 0.124 0.169 —

this is denoted by a gain factor smaller than one (Tab. 2) and a negative absolute
gain (Tab. 3), respectively. The average gain factor of all examined functions —
if all functions are weighted the same way — is 1.6 on the Intel Nehalem CPU
(Tab. 2).

Two power functions have been examined as well (see Section 8). These are
the general POW function (Figs. 6, 17 and Tabs. 3, 4) for the special case with a
constant power factor of 1.5 and the special power function for a constant power
factor of 1.5 named Pow302 (Figs. 6, 18 and Tab. 3). Although, both function
yield a comparable vectorization gain of roughly a factor of two (Tab. 2), the
special function POW302 shows the absolute smaller execution time (Tab. 3)
and should be preferred for that case.
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Figure 6: The best execution runtime for specific Fortran intrinsic function
given in seconds for both, the scalar (blue) and vector (red) pipeline. The
intrinsic function showed here exhibited their best performance typically for
vector lengths in the range from 128 to 1024 elements. The Upper Panel: On
the Intel CPU. Lower Panel: On the IBM POWERG6 CPU. Note that the scalar
execution runtimes for the ATAN2 and the POW function are exceptionally large
(19.3s and 3.7s, respectively) and therefore exceed the shown time scale.

6 The IBM XL Fortran (XLF) compiler and
the Mathematical Acceleration Subsystem

(MASS) Library

For this study we used the IBM XL Fortran compiler XLF [N], version 13.1.0.3
which provides an auto-vectorizer unit, as well, which converts simple loop
source code statements automatically into vectorized code sequences.

The auto-vectorizer unit is handled by compiler flags. It is put in use by
switching on the corresponding option of the high-order transformations, i.e.
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-ghot=vector, or by using the SIMD compiler flag, i.e. —-qsimd. The -qreport
switch produces a list file containing information about the optimizations per-
formed by the compiler. It contains information about vectorized statements as
well, however, unfortunately the vectorization report is not as detailed as the
vectorization report of ifort. All above mentioned switches are explained in
the compiler documentation [N].

However, for the work presented here we used the combination -04 -gnoipa
—-greport which includes the -ghot=vector. This combination of compiler op-
tions triggers those compiler optimizations which are comparable to the ones
used for the Intel ifort compiler (see Section 4).

Mathematical Acceleration Subsystem (MASS) consists of libraries of tuned
mathematical functions, available in versions for the AIX and Linux platforms.
The libraries offer improved performance over the standard mathematical library
routines, are thread-safe and support compilations in C, C++, and Fortran
applications and are shipped with the XL C, XL C/C++, and XL Fortran
compiler products [O].

The IBM MASS performance library provides optimized math functions in-
cluding vector intrinsic math functions [P] which used for this work. We em-
ployed the platform optimized IBM POWERG6 vector MASS library of version
6.1.0.3 which is named MASS VP6. It has to be linked using the -lmassvp6
linker flag. If possible the auto-vectorizer unit of IBM’s XL Fortran compiler
makes use of the math vector function in the IBM MASS library [N]. This can
be clearly seen e.g. in Figs. 13 and 20 where the curves of both measurements
are on top or each other.

For comparison we linked the scalar MASS library (-1mass) as well. How-
ever, if the higher optimization levels of the XLF compiler are activated [N],
e.g.-04 -qgnoipa, the compiler first tries to vectorize and if not possible it tries
to use the optimized scalar math functions of the MASS library. In such a case
XLF automatically links with the XLOPT library which contains a copy of all
IBM’s optimized math functions. Hence, the measurements performed with the
XLF compiler and the optimization level specified above, show no difference in
performance for non-vectorized loop statements whether linked with -1mass or
without (e.g. Fig. 13). One exception is the ATAN2 function which is by default
linked to the standard math library 1ibm. Only when linking with -1mass the
function is replaced by the corresponding optimized scalar ATAN2 provided by
the MASS (Fig. 11).

7 Vectorization and the IBM POWERG6 CPU

7.1 Vectorization using the IBM XLF auto-vectorizer unit
and the vector MASS library

Qualitatively, the basic run time behavior on the IBM POWERG6 CPU is the
same as on the Intel Nehalem CPU (see Subsection 5.1 and Fig. 5) as both
are RISC (Reduced Instruction Set Computing) processors. However, there are
differences arising from the hardware as e.g. cache sizes, bus bandwidths, and
clock rates. In addition, the compilers themselves are not identical in their
optimization strategies. Nevertheless, we tried to use similar compiler options
for optimization purpose (see Secs. 4 and 6).
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In some of the tested cases the performance of the vector function in IBM’s
MASS performance library is better than the performance of the corresponding
auto-vectorized function. However, if possible the auto-vectorizer unit of XLF is
making use of vector function in IBM’s MASS library (see Section 6). Generally,
our impression is that XLF’s capabilities in detecting vectorizable source code
statements is not as elaborated as of Intel’s ifort.

The gain in execution time between a non-vectorized source code statement
and one vectorized using IBM’s vector MASS library is quite large in some
cases, e.g. the vectorized two argument arc tangent (ATAN2) function in the
vector MASS library was running nearly 41 times faster than the non-vectorized
standard Fortran intrinsic function (see Section 6, last paragraph).

The lack of performance of the standard scalar ATANZ2 intrinsic function
on POWERG leads to the recommendation, that whenever possible software
developers should use the vector ATAN2 function of IBM’s MASS library instead.
Please note that there is a scalar ATAN2 intrinsic function available in the IBM
MASS library which shows a better performance than the scalar ATAN2 intrinsic
function included in the library XLOPT [Q].

7.2 Vectorization gain on IBM POWERG6

The absolute gain due to vectorization on the IBM POWERG architecture are
given in Tab. 4 for all examined Fortran intrinsic functions. Tab. 2 and Fig. 6
show the relative gain. The average gain factor of all examined functions — if
all functions are weighted the same way — is 3.3 on the IBM POWER6 CPU
(Tab. 2).

Please note that, due to is exceptional large scalar execution time, the ATAN2
intrinsic function was not taken into account, when calculating the average gain.

8 Intel Nehalem vs. IBM POWERG6

On the first glance, the gain due to vectorization on the IBM POWERG6 CPU
seems to be more pronounced compared to vectorization on the Intel Nehalem
CPU. The gain of executing source code statements using the vector pipeline
compared to a scalar execution is on average 50% larger than on the Intel CPU
(Tab. 2 and Fig. 7). Although, the actual gain is different for the various
functions, the overall picture seems to be similar for all tested functions. The
gain which can be achieved on the IBM POWERG6 architecture for our test
examples is larger than the one on the Intel Nehalem architecture or at least
on the same level (Tab. 2 and Fig. 12). However, the lowest absolute execution
times and the highest vectorization gain which is achievable for the various
intrinsic function on both architectures do not coincide (Fig. 6).

Two scalar intrinsic functions show an observable weaker performance on
the IBM POWERG CPU than the other functions. This are the ATAN2 (Figs. 6,
7, 11 and Tabs. 3, 4) function which is executed more than 11 times faster
on the Nehalem architecture and the POw function with a constant argument
of 1.5 (Figs. 6, 7, 17 and Tabs. 3, 4) which is executed nearly twice as fast on
Nehalem. However, the corresponding vectorized intrinsic functions show an op-
posed behavior. The vector ATAN2 of IBM’s MASS library shows a tremendous
vectorization gain of 41 resulting in the fact that the vector ATAN2 of IBM’s
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Table 2: Table listing the gain factors between the execution time of different
function statements in the scalar and the vector pipeline of an Intel Xeon 5570
and an IBM POWERG6 CPU, respectively. For comparison reasons the ratio of
the scalar execution times of the same statement on the Intel Nehalem CPU
and an IBM POWERG CPU, respectively, is shown in the last column.

We defined the vectorization gain shown in this table to be the ratio of scalar
to vector execution time corresponding to the vector length which yields the
overall smallest execution time (Tabs. 3 and 4)

Please note that, the average gain factors given in the last line are calculated
excluding the ATAN2 function (see Subsection 7.1).

Function HPC-FF VIP HPC-FF/VIP

(Nehalem) (POWERSG) scalar exec.
ABS (Fig. 9) 1.26 — —
ADD (Fig. 10) 1.21 — —
ATAN2  (Fig. 11) 1.49 41.0 0.09
DIV (Fig. 12) 1.82 1.33 1.75
EXP (Fig. 13) 2.22 5.35 0.66
FLOOR  (Fig. 23) 2.33 — —
INT (Fig. 14) 1.00 — —
LiM-MIN  (Fig. 15) 0.75 1.01 0.38
MADD (Fig. 10) 1.72 — —
MIN (Fig. 16) 1.00 1.01 0.57
MopuLo (Fig. 19) 1.87 — —
MULT (Fig. 22) 1.19 — —
NINT (Fig. 14) 1.00 — —
POW (Fig. 17) 1.92 6.37 0.51
pow302 (Fig. 18) 2.03 — —
REAL (Fig. 23) 1.64 — —
SIN (Fig. 20) 2.51 5.94 0.75
SQR (Fig. 22) 1.40 — —
SQRT (Fig. 21) 2.23 2.15 1.76
vpPACKM  (Figs. 24,25) 1.00 — —
AVERAGE (excl. ATAN2) 1.60 3.31
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Figure 7: Special bar diagram indicating the difference of execution runtime of
specific intrinsic functions measured on the IBM POWER 6 CPU compared to
the same execution runtime measured on the Nehalem CPU of HPC-FF. The
difference in this special bar diagram is given in percent for both, the scalar
(blue) and vector (red) pipelines. We define that -100 percent denotes that
a specific statement was executed with the double execution runtime on IBM
POWER 6 compared to Intel Nehalem [100 * (¢1pte1 — tigm ) /tBM], whereas +100
percent denotes that a statement in half the execution runtime [100 * (tigm —
tinte1)/tmtel]. Note that the scalar performance of the ATAN2 function on IBM’s
POWERG6 compared to Intel’s Nehalem is exceptionally weak (-1045%) and
therefore exceed the shown scale.

MASS is around twice as fast as the vectorized ATAN2 function on Nehalem.
The special case of the POW function shows a vectorization gain of 6.4, so that
the vectorized version is executed 1.6 times faster on IBM POWERG. How-
ever, one should mention that the special case having a constant power factor
of 1.5 is implemented in a separate intrinsic function named Pow302 (Figs. 6,
18 and Tab. 3) in the Intel MKL which shows a comparable or slightly better
performance (see Subsection 5.5) than the Pow function of IBM’s MASS library.

All in all, we find that there is no clear trend in the performance of the
investigated function on IBM POWERG6 compared to Intel Nehalem (Fig. 7).
For two out of seven compared functions the performance of both, the vector
as well as the scalar function is better on IBM POWERG6 (pD1v Figs. 12 and
SQRT Figs. 21). For another two functions it is the other way round (LIM-MIN
Figs. 15 and MIN Figs. 16). Three functions show a weaker scalar performance on
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IBM POWERG, however, the vectorized corresponding functions show a better
performance than on Intel Nehalem (ATAN2 Figs. 11, EXP Figs. 13, and SIN
Figs. 20).

Therefore, no statement can be made whether POWERG or Nehalem exhibits
a higher absolute vector performance. Instead this report is just meant to
be a practical guideline for software developers where to put the focus when
trying to exploit the vectorization potentials of scientific numeric codes on one
of the two architectures covered by this report. The summarized behavior of
the investigated intrinsic functions can be found in Tabs. 1, 2 and Figs. 6, 7.
The details of the measurement are expressed in Appendix B and C.

9 Issues of Vectorization

In this chapter we list some special vectorization issues of the compilers and
architectures used for this study. All listed issues are part of the experience
we gained with this study. Therefore, we make no claim for this chapter to be
complete.

9.1 Impact of the vector length on the execution runtime

In some cases the vector length seems to have a strong impact on the execution
runtime on Intel Nehalem (e.g. Figs. 10 and 22).

To test this in detail we sampled the vector length in small and equidistant
steps. The result of this measurement for the MULTIPLICATION operation is
shown in Fig. 8.

For most of the investigated vector length the MKL vector MULTIPLICATION
(vDMUL) shows the least performance of all compared vectorized statements.
Only near vector lengths which correspond to multiples of 512 (2%) is the per-
formance comparable to the auto-vectorized loop statement. This behavior can
be found for all operations directly performed in registers, i.e. the ADD, the
MULT, and the SQR operation. Hence in the case of those operations the user
has to take special care about the actual vector length.

9.2 Unsupported Formats of the ifort Auto-Vectorizer

A common known example of an unsupported format of the ifort auto-vectorizer
are double precision complex (COMPLEX*16) variables [R]. They are treated by
the CPU in the same way as quad precision real (REAL*16) variables. They
cannot be processed by the hardware vector register of Intel’s Nehalem archi-
tecture since it has just one type of floating point register serving as scalar or
vector register, respectively [F]. This register has a total width of 128 bits in
Nehalem. For this reason it can hold two double precision real variables, but
only one quad precision real variable and one double complex variable, respec-
tively. Therefore, the auto-vectorizer does not vectorize statements including
double precision complex variables [R].

9.3 IBM XL Fortran SIMD Functions on POWERG6

Besides the vector math functions included in the IBM MASS library, IBM’s
XL Fortran provides a number of different additional vector functions for all
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Figure 8: Run time of a MULTIPLICATION versus vector length compiled with

ifort on a Xeon X5570 CPU of HPC-FF shown for a non-vectorized loop (blue)
and loops vectorized by the auto-vectorizer (red) and manually using the Vector
Math Functions in the Intel MKL (yellow) and IPP (green) library. The curve
is measured for vector length of 16 (2%) to 2048 (2!!) in steps of 16 (see Fig. 22,
upper panel).

kinds of operations (math, conversion, etc.), the so called Vector Multimedia
eXtension (VMX) and the Vector Scalar eXtension (VSX) intrinsic functions [S].
These functions use XL Fortran intrinsic derived types, e.g. the VECTOR FLOAT
type to work with Fortran REAL*4 type vectors.

However, on the IBM POWERSG6 architecture the VSX instruction set has
only been partly implemented under the name of AltiVec [S]. This leads to
the constraint that the 128 bit vector unit of AltiVec can be subdivided into
16x8, 8x16, and 4x32 bit elements [T], but not into 2x64 bit (see Fig. 1, left
panel). Thus the AltiVec instruction set of XLF does not support, in contrast
to the vector MASS library, double precision real types. Intrinsic functions that
use or result in the INTEGER(8), UNSIGNED(8), or REAL(8) vector types
require an architecture that supports the VSX instruction set extensions, such
as POWERY [S].

10 Summary and Conclusions
The most important question a reader of this report may have in mind is if

her/his scientific numerical code can benefit from vectorisation. We tried to
give an answer on that using a conservative approach. In the test case used
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(Section 2) we assumed that all data are originally located in the main memory
and that they have to be transferred through the cache hierarchy to perform
one operation on this data.

In a real case this situation is most likely a worst case scenario. The amount
of overhead introduced due to the data transfer from the main memory is prob-
ably smaller than in our test case. So the numbers for specific operations given
in this report are supposed to be a conservative estimate of how much one can
gain by vectorizing specific operation in a scientific numerical code. However,
one should keep in mind that it is not always possible to vectorize single oper-
ations without vectorizing a whole or large parts of a subroutine, as well. This
can make restructuring of the code unavoidable.

For our investigation on vectorization performance we used the Intel Xeon
X5570 CPU of HPC-FF at JSC based on Intel’s Nehalem architecture (Subsec-
tion 3.1) together with the Intel Fortran compiler ifort (v11.1.072) and the
Intel MKL (v10.2.5.035) and IPP (v7.0.3.048) performance libraries. For the
Intel ifort compiler we used the -03 -xSSE4.2 optimization flags (Section 4).
Additionally, the vectorization performance of specific intrinsic functions was
tested on the IBM POWERG CPUs (Subsection 3.2) of VIP at RZG using the
IBM XL Fortran compiler (v13.1.0.3) and IBM’s MASS library (v6.1.0.3) de-
scribed in Section 6. For the IBM XLF compiler we used the optimization flags
-04 -gnoipa (Section 6).

The work presented in this report results in following statements:

e In total the auto-vectorizer unit of the Intel ifort compiler version 11.1.072
used for this study does a better job vectorizing the intrinsic functions be-
ing under consideration than both, the Intel MKL (v10.2.5.035) and IPP
(v7.0.3.048) performance libraries. Therefore, using the auto-vectorizer
should be preferred. In addition this approach does not produce platform
specific source code and it requires less programming efforts by the soft-
ware developer.

However, in a few cases the vector functions of the Intel MKL show a bet-
ter performance. In those cases the MKL provides an alternative if pure
performance is required.

e The Intel IPP library of version 7.0.3.048 cannot be recommended for our
double precision (64 bit) test cases, since it shows a performance which is
in all cases less or merely equal to the performance achieved by the Intel
ifort auto-vectorizer unit and Intel MKL library, respectively.

e In almost all tested cases the performance of the scalar functions linked
with and without the scalar MASS library, respectively, is the same. As
well as the performance of the functions vectorized by the auto-vectorizer
unit of XLF and the functions of the vector MASS library respectively,
is the same. This is the case because depending on the optimization
level, the IBM XLF compiler uses the math functions from the XLOPT
library which includes amongst others identical math functions as the
MASS library. The exception in this study is the is the ATAN2 function
(Fig. 11).
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e The IBM POWERG6 architecture yield for most of the investigated func-
tions the larger vectorization gain factors (3.2 in average) compared to
the Intel Nehalem architecture (1.5 in average). Altogether, both archi-
tectures show a comparable absolute performance, however, each has its
strength and weaknesses.

e IBM’s XL Fortran compiler seems to be not as effective in analyzing the
vectorization potential of complexer source code structures as Intel’s For-
tran compiler ifort.

If pure performance is required in those cases the vector MASS intrinsic
functions have to be implemented manually. It assures that XLF is mak-
ing use of the full vectorization potentials of a specific numerical code on
POWERG6. However, doing so generates platform dependent source code
and it requires a larger amount of programming efforts.

e The length of the work vector when using the so called “strip mining”
should fulfill the following requirements. The length must be large enough
to make the loop overhead negligible (i.e. around 32 in our test case) and
it must be small enough that all data work vectors fit into the L1 cache
of the CPU (i.e. around 1024 in our test case). Furthermore, the length
should be a power of two (i.e. 2",n € IN).

Generally, to determine whether a scientific numerical code will benefit from
vectorization a number of steps are required. First the code needs to be profiled
to identify the “hot spots” of the code. Then the software developer has to
review the fraction of computationally intensive intrinsic functions in the “hot
spots” of the code. For this especially Fig. 6 should give a guideline.

However, it has to be noted that using optimized and vectorized math func-
tion leads to a slightly reduced accuracy of the function results (e.g. see [U] and
)
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A Summary of Vector Statement Execution Times

Table 3: Table listing the execution times of different function statements in
the scalar and the vector pipeline of an Intel Xeon 5570 CPU corresponding
to the vector length which yields the overall smallest execution time in our
measurements.

Function scalar pipeline vector pipeline difference

(sec) (sec) (sec)
ABS (Fig. 9) 0.114 0.092 0.022
ADD (Fig. 10) 0.174 0.144 0.030
ATAN2 (Fig. 11) 1.695 1.152 0.543
DIV (Fig. 12) 0.561 0.308 0.253
EXP (Fig. 13) 0.782 0.352 0.430
FLOOR  (Fig. 23) 0.168 0.072 0.096
INT (Fig. 14) 0.053 0.053 0.000
LiIM-MIN  (Fig. 15) 0.053 0.068 -0.015
MADD (Fig. 10) 0.367 0.213 0.154
MIN (Fig. 16) 0.108 0.108 0.000
MopuLo (Fig. 19) 0.512 0.274 0.238
MULT (Fig. 22) 0.157 0.132 0.025
NINT (Fig. 14) 0.063 0.063 0.000
POW (Fig. 17) 1.872 0.947 0.925
pow302 (Fig. 18) 0.757 0.395 0.362
REAL (Fig. 23) 0.100 0.061 0.039
SIN (Fig. 20) 1.220 0.486 0.734
SQR (Fig. 22) 0.095 0.068 0.027
SQRT (Fig. 21) 0.797 0.358 0.439
vpPACKM  (Figs. 24,25) 0.124 0.124 0.000

Table 4: Table listing the absolute minimal execution time of different function
statements in the scalar and the vector pipeline of an IBM POWERG6 CPU
corresponding to the vector length which yields the overall smallest execution
time in our measurements.

Function scalar pipeline vector pipeline difference

(sec) (sec) (sec)
AaTtan2  (Fig. 11) 19.41 0.474 18.93
DIV (Fig. 12) 0.320 0.240 0.080
EXP (Fig. 13) 1.193 0.223 0.970
LIM-MIN (Fig. 15) 0.139 0.138 0.001
MIN (Fig. 16) 0.190 0.188 0.002
POW (Fig. 17) 3.668 0.576 3.092
SIN (Fig. 20) 1.631 0.275 1.356
SQRT (Fig. 21) 0.453 0.211 0.242
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B Double Precision Performance Measurement

In the following only performance curves for intrinsic functions using double
precision, i.e. 64 bit arguments are collected (see Tab. 2). Note that, all plots
show the average of three independent measurements and all are log log plots.

The plots are organized as follows. For those functions which are available
for the Intel Nehalem architecture as well as for the IBM POWERSG6 architecture,
the plot panel shows the results on Intel in the upper panel and those on IBM
in the lower panel. The plot panels which show the results of functions only
available on Intel are combined arbitrarily, however, as far as possible showing
two plots per panel.

Please note that in most of the plots showing measurements on the IBM
POWERG6 CPU, the brown line which denotes the functions of the scalar MASS
library is lying underneath the blue line showing the scalar functions of the
standard math library 1ibm.
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Figure 9: Run time of the Fortran intrinsic ABSOLUTE (ABS) function versus
vector length compiled with ifort on a Xeon X5570 CPU of HPC-FF shown for
a non-vectorized loop (blue) and loops vectorized by the auto-vectorizer (red)
and manually using the Vector Functions of the Intel MKL (yellow) and IPP
(green) library.
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Figure 10: Run time of the Fortran intrinsic function versus vector length on
a Xeon X5570 CPU of HPC-FF using ifort shown for a non-vectorized loop
(blue) and loops vectorized by the auto-vectorizer (red) and manually using the
Vector Functions of the Intel MKL (yellow) and IPP (green) library. Upper
Panel: The ADD function. Lower Panel: The fused MULTIPLY ADD operation
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Figure 11: Run time of the Fortran intrinsic 2 ARGUMENT ARC TANGENT

(ATAN2) function versus vector length shown for a non-vectorized loop (blue,
brown) and loops vectorized by the auto-vectorizer (red) and manually (yellow).
Upper Panel: Using ifort and the Vector Math Functions in the Intel MKL
library on a Xeon X5570 CPU of HPC-FF. Lower Panel: Using XLF and the
Vector Functions in the IBM MASS VP6 library on an IBM POWERG6 CPU of
VIP. Note that the blue line is lying on top of the red line.
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Figure 12: Run time of a DIVISION operation versus vector length shown for a
non-vectorized loop (blue, brown) and loops vectorized by the auto-vectorizer
(red) and manually (yellow, green). Upper Panel: Using ifort and the Vector
Functions in the Intel MKL (yellow) and IPP (green) library on a Xeon X5570
CPU of HPC-FF. Lower Panel: Using XLF and the Vector Functions in the
IBM MASS VP6 library on an IBM POWERG6 CPU of VIP.
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Figure 13: Run time of the Fortran intrinsic EXPONENTIAL (EXP) function
versus vector length shown for a non-vectorized loop (blue, brown) and loops
vectorized by the auto-vectorizer (red) and manually (yellow, green). Upper
Panel: Using ifort and the Vector Math Functions in the Intel MKL and Intel
IPP library on a Xeon X5570 CPU of HPC-FF. Lower Panel: Using XLF and
the Vector Functions in the IBM MASS VP6 library on an IBM POWER6 CPU
of VIP.
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Figure 14: Run time of FORTRAN intrinsic functions versus vector length on a
Xeon X5570 CPU of HPC-FF compiled with ifort shown for a non-vectorized
loop (blue) and loops vectorized by the auto-vectorizer (red) and manually using
the Vector Functions in the Intel IPP library(green). Upper Panel: CONVERT
TO INTEGER (INT) function. Lower Panel: CONVERT TO NEAREST INTEGER
(NINT) function.
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Figure 15: Run time of the Fortran MIN intrinsic function versus vector length
using the min function to limit one vector to a given upper limit shown for a non-
vectorized loop (blue) and loops vectorized by auto-vectorizer (red), manually
(green), and an if-statement performing the same operation vectorized by the
auto-vectorizer (magenta). Upper Panel: Using ifort and the Vector Math
Functions in the Intel IPP library on a Xeon X5570 CPU of HPC-FF. Lower
Panel: Using XLF and the Vector Functions in the IBM MASS VP6 library on
an IBM POWERG6 CPU of VIP.
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Figure 16: Run time of the Fortran intrinsic MIN function versus vector length
evaluating the minimum for each element of two vectors shown for a non-
vectorized loop (blue, brown) and loops vectorized by the auto-vectorizer (red)
and manually (green), and an if-statement performing the same operation vec-
torized by the auto-vectorizer (magenta). Note that the blue, the red and the
magenta curve lie on top of each other. Upper Panel: Using ifort and the
Vector Math Functions in the Intel IPP library on a Xeon X5570 CPU of HPC-
FF. Lower Panel: Using XLF and the Vector Functions in the IBM MASS VP6
library on an IBM POWERG6 CPU of VIP.
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Figure 17: Run time of the intrinsic POW operation versus vector length
shown for a non-vectorized loop (blue, brown) and loops vectorized by the
auto-vectorizer (red) and manually (yellow, green). The POW operation sets
a specific vector element of the result vector to the result of the corresponding
vector element of the first input vector raised to the power of the second input
vector. However, for this measurement all elements of the second input vector
are set to 1.5. Upper Panel: Using ifort and the Vector Math Functions in the
Intel IPP library on a Xeon X5570 CPU of HPC-FF. Lower Panel: Using XLF
and the Vector Functions in the IBM MASS VP6 library on an IBM POWERG6
CPU of VIP. 36
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Figure 18: Run time of the intrinsic POW302 operation versus vector length
shown for a non-vectorized loop (blue) and loops vectorized by the auto-
vectorizer (red) and manually (yellow, green). The POW302 operation sets
the result vector’s element to the result of the arguments vector’s element to
the power of 1.5.
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Figure 19: Run time of the Fortran intrinsic MODULO function versus vector
length compiled with ifort on a Xeon X5570 CPU of HPC-FF shown for a
non-vectorized loop (blue) and loops vectorized by the auto-vectorizer (red)
and manually using the Vector Functions in the Intel MKL (yellow) and IPP

(green) library.
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Figure 20: Run time of the Fortran intrinsic SINE (SIN) function versus vector
length shown for a non-vectorized loop (blue, brown) and loops vectorized by
the auto-vectorizer (red) and manually (yellow, green). Upper Panel: Using
ifort and the Vector Math Functions in the Intel MKL and Intel IPP library
on a Xeon X5570 CPU of HPC-FF. Lower Panel: Using XLF and the Vector
Functions in the IBM MASS VP6 library on an IBM POWER6 CPU of VIP.
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Figure 21: Run time of the Fortran intrinsic SQUARE ROOT (SQRT) function
versus vector length shown for a non-vectorized loop (blue, brown) and loops
vectorized by the auto-vectorizer (red) and manually (yellow). Upper Panel:
Using ifort and the Vector Math Functions in the Intel MKL library on a Xeon
X5570 CPU of HPC-FF. Lower Panel: Using XLF and the Vector Functions in
the IBM MASS VP6 library on an IBM POWER6 CPU of VIP.
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Figure 22: Run time of FORTRAN intrinsic functions versus vector length on a
Xeon X5570 CPU of HPC-FF compiled with ifort shown for a non-vectorized
loop (blue) and loops vectorized by the auto-vectorizer (red) and manually using
the Vector Functions in the Intel IPP library(green). Upper Panel: MULTIPLY
(murT) function. Lower Panel: SQUARE (SQR) function.
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Figure 23: Run time of FORTRAN intrinsic functions versus vector length com-
piled with ifort on a Xeon X5570 CPU of HPC-FF shown for a non-vectorized
loop (blue) and loops vectorized by the auto-vectorizer (red) and manually using
the Vector Functions in the Intel MKL (yellow) and IPP (green) library. Upper
Panel: FLOOR function. Lower Panel: CONVERT TO REAL (REAL) function.
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Figure 24: Run time of the Intel IPP VECTOR PACKING operation versus vector
length a Xeon X5570 CPU of HPC-FF compiled with ifort shown for a non-
vectorized loop (blue) and loops vectorized by the auto-vectorizer (red) and
manually using the Vector Math Functions of the Intel MKL library (yellow).
Run times scaled to run time corresponding to a packing operation with one
vector (see Subsection 5.3). Upper Panel: Packing 1 vector using a defined
packing pattern. Lower Panel: Packing 3 vectors using the same packing pattern
as above.
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Figure 25: Same as Fig. 24. Run times normalized corresponding to run time
of one vector. Upper Panel: Packing 6 vector using a defined packing pattern.
Lower Panel: Packing 9 vectors using the same packing pattern as above.
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C Single Precision Performance Measurement

In the following only performance curves for intrinsic functions using single
precision, i.e. 32 bit arguments are collected (see Subsection 4.2). Note that, all
are log log plots and show the average of three independent measurements.
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Figure 26: Run time of FORTRAN intrinsic functions for single precision, i.e.
32 bit arguments versus vector length compiled with ifort on a Xeon X5570
CPU of HPC-FF shown for a non-vectorized loop (blue) and loops vectorized
by the auto-vectorizer (red) and manually using the Vector Functions in the
Intel MKL (yellow) and IPP (green) library. Upper Panel: MULTIPLY (MULT)
function. Lower Panel: EXPONENTIAL (EXP) function.
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